Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Body mass index (BMI)


BMI iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI21001/INI21001.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI21001/INI21001.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI21001/INI21001.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI21001/INI21001.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI21001/INI21001.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.018[0.016, 0.020]9.8x10-273
white BritishGenotype-only modelR20.119[0.114, 0.124]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.134[0.129, 0.139]<1.0x10-300
Non-British whiteCovariate-only modelR20.019[0.009, 0.029]1.2x10-13
Non-British whiteGenotype-only modelR20.112[0.090, 0.133]6.4x10-76
Non-British whiteFull model (covariates and genotypes)R20.124[0.102, 0.147]9.1x10-85
South AsianCovariate-only modelR20.002[-0.003, 0.007]6.8x10-02
South AsianGenotype-only modelR20.089[0.062, 0.117]2.7x10-31
South AsianFull model (covariates and genotypes)R20.083[0.056, 0.110]5.1x10-29
AfricanCovariate-only modelR20.002[-0.003, 0.007]1.4x10-01
AfricanGenotype-only modelR20.018[0.003, 0.032]4.3x10-06
AfricanFull model (covariates and genotypes)R20.009[-0.001, 0.020]9.1x10-04
OthersCovariate-only modelR20.050[0.040, 0.059]3.3x10-90
OthersGenotype-only modelR20.103[0.090, 0.115]9.1x10-190
OthersFull model (covariates and genotypes)R20.137[0.123, 0.151]8.0x10-256

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI21001/INI21001.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 35941 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
165380095416:53800954:T:Crs1421085CIntronicFTO0.330
24171672:417167:T:Crs62106258COthersAC105393.2-0.281
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.265
11778894801:177889480:A:Grs543874GOthersSEC16B0.183
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.160
185785258718:57852587:T:Crs476828COthers0.154
112767991611:27679916:C:Trs6265TPAVsBDNF-0.146
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.123
194756900319:47569003:G:Ars3810291AUTRZC3H40.116
4451798834:45179883:C:Trs12641981TOthers0.110
147994264714:79942647:G:Ars7156625AIntronicNRXN30.107
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.101
2251415382:25141538:A:Grs11676272GPAVsADCY30.100
31413266023:141326602:T:Crs295322CPAVsRASA20.100
125024746812:50247468:G:Ars7138803AOthers0.088
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.087
16401346716:4013467:C:Trs2531995TUTRADCY90.086
165375688516:53756885:A:Grs76488452GIntronicFTO0.086
19224562219:2245622:G:Ars45521740AOthersSF3A20.085
3499249403:49924940:T:Crs1062633CPAVsMST1R0.085
81382152288:138215228:G:Ars16906845AOthers-0.085
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.084
51458953945:145895394:G:Ars114285050APTVsGPR151-0.084
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.084
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.084
41002393194:100239319:T:Crs1229984CPAVsADH1B0.083
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.080
6403719186:40371918:C:Trs1579557TIntronicLRFN20.079
26357212:635721:T:Crs6755502COthers0.078
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.076
7766081437:76608143:C:Trs2245368TOthersDTX2P1-0.074
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.073
156225498915:62254989:T:Crs3784635CPAVsVPS13C-0.073
191941309219:19413092:C:Trs17751061TPAVsSUGP1-0.072
51535378935:153537893:G:Trs7715256TIntronicMFAP3-0.072
6131892756:13189275:T:Crs9367368CIntronicPHACTR1-0.072
31858223533:185822353:T:Grs10513801GIntronicETV5-0.071
26228272:622827:T:Crs2867125COthers0.071
161993538916:19935389:G:Ars12446632AOthers-0.071
41027093084:102709308:T:Crs11097755CIntronicBANK10.071
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.070
109977240410:99772404:G:Ars563296AIntronicCRTAC10.070
9284123759:28412375:T:Crs2183825CIntronicLINGO20.069
114752994711:47529947:C:Ars7124681AIntronicCELF10.069
142968532814:29685328:G:Ars974471AOthers0.069
9167194459:16719445:C:Trs10962549TIntronicBNC20.069
125764864412:57648644:C:Trs78607331TPAVsR3HDM20.068
6403637346:40363734:C:Trs930249TIntronicLRFN2-0.067
8772282228:77228222:A:Grs1405348GOthers0.067
162037081016:20370810:C:Trs9652588TPAVsPDILT-0.067
8734390708:73439070:A:Grs1431659GOthers-0.067
11903031491:190303149:C:Trs648091TIntronicRP11-547I7.1, BRINP3-0.066
21422931462:142293146:C:Ars17551974AIntronicLRP1B-0.065
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.065
12018692571:201869257:G:Ars2820312APAVsLMOD10.064
201581949520:15819495:A:Grs8123881GIntronicMACROD20.064
102183010410:21830104:A:Grs11012732GIntronicMLLT100.064
1786236261:78623626:C:Trs17391694TOthers0.064
115463041:1546304:C:Trs11492279TOthersMIB2-0.063
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.063
163108862516:31088625:A:Grs749670GPAVsZNF646-0.063
143678977514:36789775:A:Trs2899849TPAVsMBIP-0.063
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.060
51039440205:103944020:G:Trs254024TIntronicRP11-6N13.10.060
1321654951:32165495:G:Trs2228552TPAVsCOL16A10.059
31317746423:131774642:G:Ars7625768AIntronicCPNE40.059
6484151526:48415152:G:Ars9395354AOthers0.059
3517550653:51755065:T:Crs4687770COthersGRM2-0.059
191855674919:18556749:T:Crs34053595CIntronicELL0.059
91341050489:134105048:A:Grs28665311GPTVsNUP214-0.059
11549913891:154991389:T:Crs905938CIntronicDCST20.059
1012882040710:128820407:A:Crs9418789CIntronicRP11-223P11.3, DOCK1, RP11-223P11.2-0.059
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.058
11949611721:194961172:A:Grs7349184GOthers-0.058
3123931253:12393125:C:Grs1801282GPAVsPPARG0.058
1113460101211:134601012:T:Grs12364470GOthersRP11-469N6.10.058
31143992963:114399296:G:Ars17681451AIntronicZBTB20-0.058
6437570826:43757082:T:Ars4711750AOthersVEGFA-0.057
142593098814:25930988:C:Ars8015400AOthers0.057
12101317612:1013176:A:Grs10849582GIntronicWNK1-0.056
5957288985:95728898:C:Grs6235GPAVsPCSK10.056
5888414885:88841488:A:Grs1881459GOthers0.056
22368176292:236817629:C:Trs4663215TIntronicAGAP1-0.056
1212308744212:123087442:A:Grs7307735GPAVsKNTC10.056
134075977313:40759773:T:Crs10507483CIntronicLINC003320.056
61533816226:153381622:A:Crs2185027CIntronicRGS170.056
133314754813:33147548:T:Grs7332115GOthers-0.056
22053777052:205377705:A:Grs10804139GOthers-0.056
1010243304610:102433046:C:Trs11190644TOthers0.055
213263855021:32638550:C:Trs2070418TPAVsTIAM1-0.055
71135037037:113503703:G:Ars10247621AOthers-0.055
21989502402:198950240:G:Ars1064213APAVsPLCL10.055
31195341533:119534153:C:Trs2276707TPAVsNR1I2-0.055
4652270494:65227049:T:Crs7678517CIntronicTECRL-0.054
31839761033:183976103:C:Trs11546878TPAVsECE2-0.054
8263657168:26365716:C:Trs2233701TPAVsPNMA20.054
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.054
91246270129:124627012:A:Grs6478538GIntronicTTLL11-0.054
X136113464X:136113464:C:Ars1190736APAVsGPR101-0.054
176583874317:65838743:T:Grs8074078GIntronicBPTF0.054

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 35941 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References