Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Weight


Weight iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI21002/INI21002.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI21002/INI21002.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI21002/INI21002.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI21002/INI21002.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI21002/INI21002.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.218[0.213, 0.224]<1.0x10-300
white BritishGenotype-only modelR20.111[0.107, 0.116]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.328[0.322, 0.333]<1.0x10-300
Non-British whiteCovariate-only modelR20.235[0.208, 0.262]4.2x10-169
Non-British whiteGenotype-only modelR20.120[0.098, 0.143]3.6x10-82
Non-British whiteFull model (covariates and genotypes)R20.346[0.318, 0.374]5.3x10-267
South AsianCovariate-only modelR20.153[0.120, 0.187]4.4x10-55
South AsianGenotype-only modelR20.096[0.068, 0.124]3.8x10-34
South AsianFull model (covariates and genotypes)R20.253[0.215, 0.291]4.5x10-95
AfricanCovariate-only modelR20.026[0.008, 0.043]2.4x10-08
AfricanGenotype-only modelR20.019[0.004, 0.034]2.1x10-06
AfricanFull model (covariates and genotypes)R20.043[0.021, 0.065]4.3x10-13
OthersCovariate-only modelR20.263[0.246, 0.280]<1.0x10-300
OthersGenotype-only modelR20.102[0.090, 0.115]1.2x10-188
OthersFull model (covariates and genotypes)R20.343[0.326, 0.360]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI21002/INI21002.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 38592 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.897
165380095416:53800954:T:Crs1421085CIntronicFTO0.834
24171672:417167:T:Crs62106258COthersAC105393.2-0.823
11778894801:177889480:A:Grs543874GOthersSEC16B0.489
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.460
6198394156:19839415:C:Trs41271299TIntronicID40.432
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.383
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.374
112767991611:27679916:C:Trs6265TPAVsBDNF-0.365
147994264714:79942647:G:Ars7156625AIntronicNRXN30.361
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.356
31411060633:141106063:T:Crs7632381COthersZBTB380.355
158940068015:89400680:A:Grs28407189GPAVsACAN-0.348
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-0.336
185783976918:57839769:C:Ars571312AOthers0.327
1786236261:78623626:C:Trs17391694TOthers0.326
194756900319:47569003:G:Ars3810291AUTRZC3H40.316
31413266023:141326602:T:Crs295322CPAVsRASA20.314
156745769815:67457698:A:Grs35874463GPAVsSMAD30.305
4451798834:45179883:C:Trs12641981TOthers0.304
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.303
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.291
126635182612:66351826:T:Crs1351394CUTRHMGA2-0.281
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.280
203402575620:34025756:A:Grs143384GUTRGDF50.280
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-0.274
81382152288:138215228:G:Ars16906845AOthers-0.270
16401346716:4013467:C:Trs2531995TUTRADCY90.265
146097653714:60976537:C:Ars33912345APAVsSIX6-0.262
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.261
51458953945:145895394:G:Ars114285050APTVsGPR151-0.261
165375688516:53756885:A:Grs76488452GIntronicFTO0.261
81205960238:120596023:A:Grs10283100GPAVsENPP20.259
107396424310:73964243:G:Crs11000217CPTVsASCC10.258
2277309402:27730940:T:Crs1260326CPAVsGCKR0.252
176583874317:65838743:T:Grs8074078GIntronicBPTF0.249
26378302:637830:A:Grs13393304GOthers0.248
1212308744212:123087442:A:Grs7307735GPAVsKNTC10.248
185785258718:57852587:T:Crs476828COthers0.243
12186097021:218609702:A:Grs6684205GIntronicTGFB20.240
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.235
142968532814:29685328:G:Ars974471AOthers0.234
31289711133:128971113:T:Crs4927953CPAVsCOPG10.233
31839761033:183976103:C:Trs11546878TPAVsECE2-0.230
147063341114:70633411:C:Trs41286548TPAVsSLC8A3-0.229
81356498488:135649848:G:Ars12541381APAVsZFAT-0.226
125024746812:50247468:G:Ars7138803AOthers0.226
2333595652:33359565:G:Ars116713089AUTRLTBP1-0.223
11549913891:154991389:T:Crs905938CIntronicDCST20.221
728018037:2801803:C:Trs798489TPTVsGNA12-0.220
3499249403:49924940:T:Crs1062633CPAVsMST1R0.220
11768027661:176802766:G:Trs1014719TIntronicPAPPA20.218
5957288985:95728898:C:Grs6235GPAVsPCSK10.217
162037081016:20370810:C:Trs9652588TPAVsPDILT-0.215
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.214
121287109912:12871099:T:Grs2066827GPAVsCDKN1B-0.211
171188135617:11881356:G:Ars117755721APAVsZNF18-0.208
1212482646212:124826462:C:Trs2229840TPAVsNCOR20.208
21422931462:142293146:C:Ars17551974AIntronicLRP1B-0.207
41027093084:102709308:T:Crs11097755CIntronicBANK10.206
31855486833:185548683:G:Ars720390AOthers0.206
7766081437:76608143:C:Trs2245368TOthersDTX2P1-0.205
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN10.205
41455651164:145565116:G:Ars7680661AIntronicHHIP-AS10.204
51535378935:153537893:G:Trs7715256TIntronicMFAP3-0.202
61260906086:126090608:A:Grs9398787GOthers0.202
17758005217:7580052:C:Trs8079544TIntronicTP530.202
413415534:1341553:A:Grs111391498GPAVsUVSSA-0.201
11281073111:2810731:C:Trs2237886TIntronicKCNQ10.200
109977240410:99772404:G:Ars563296AIntronicCRTAC10.197
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.196
1779675231:77967523:C:Trs12049202TIntronicAK50.195
3116404813:11640481:A:Grs17776719GIntronicVGLL40.195
8734390708:73439070:A:Grs1431659GOthers-0.194
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.194
9983199699:98319969:T:Crs17370391COthers0.193
156225498915:62254989:T:Crs3784635CPAVsVPS13C-0.191
1728357401:72835740:G:Ars2613504AOthers0.190
6262006776:26200677:A:Grs806794GUTRHIST1H2BF-0.190
5509207645:50920764:A:Grs17236135GOthers0.189
5675960885:67596088:G:Ars3756668AUTRPIK3R1-0.188
3123931253:12393125:C:Grs1801282GPAVsPPARG0.188
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.188
109874275010:98742750:A:Crs3829856CPAVsC10orf12-0.188
1213339332312:133393323:C:Trs2291256TPAVsGOLGA30.187
134075977313:40759773:T:Crs10507483CIntronicLINC003320.187
201581949520:15819495:A:Grs8123881GIntronicMACROD20.187
31719690773:171969077:C:Grs7652177GPAVsFNDC3B0.187
134275170713:42751707:T:Crs12585865CIntronicDGKH-0.186
395173693:9517369:C:Trs11542009TPAVsSETD50.186
143329312214:33293122:A:Grs1051695GPAVsAKAP6-0.186
41551604244:155160424:A:ACrs546143621ACPTVsDCHS2-0.185
184260609118:42606091:C:Trs9967367TIntronicSETBP1-0.184
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.184
135106857513:51068575:T:Crs1262775CIntronicDLEU10.183
677200596:7720059:G:Ars12198986AOthers0.183
205415375920:54153759:A:Grs2244665GOthers0.183
19224562219:2245622:G:Ars45521740AOthersSF3A20.182
125714606912:57146069:T:Grs2277339GPAVsPRIM1-0.181
166966668316:69666683:G:Ars244415AIntronicNFAT5-0.181

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 38592 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References