Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Whole body fat mass


Whole body fat mass iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23100/INI23100.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23100/INI23100.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23100/INI23100.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23100/INI23100.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23100/INI23100.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.068[0.065, 0.072]<1.0x10-300
white BritishGenotype-only modelR20.105[0.100, 0.109]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.172[0.167, 0.178]<1.0x10-300
Non-British whiteCovariate-only modelR20.044[0.030, 0.059]9.5x10-30
Non-British whiteGenotype-only modelR20.115[0.093, 0.136]6.2x10-77
Non-British whiteFull model (covariates and genotypes)R20.159[0.135, 0.183]1.7x10-108
South AsianCovariate-only modelR20.135[0.103, 0.168]1.1x10-47
South AsianGenotype-only modelR20.098[0.069, 0.126]3.3x10-34
South AsianFull model (covariates and genotypes)R20.213[0.176, 0.249]3.4x10-77
AfricanCovariate-only modelR20.205[0.164, 0.245]1.0x10-59
AfricanGenotype-only modelR20.013[0.000, 0.026]9.8x10-05
AfricanFull model (covariates and genotypes)R20.157[0.119, 0.194]5.7x10-45
OthersCovariate-only modelR20.092[0.080, 0.104]6.3x10-166
OthersGenotype-only modelR20.101[0.088, 0.113]2.4x10-182
OthersFull model (covariates and genotypes)R20.174[0.159, 0.189]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23100/INI23100.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 33555 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
165380095416:53800954:T:Crs1421085CIntronicFTO0.489
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.467
24171672:417167:T:Crs62106258COthersAC105393.2-0.439
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.302
11778894801:177889480:A:Grs543874GOthersSEC16B0.300
3123931253:12393125:C:Grs1801282GPAVsPPARG0.263
185785258718:57852587:T:Crs476828COthers0.210
4451798834:45179883:C:Trs12641981TOthers0.203
112767991611:27679916:C:Trs6265TPAVsBDNF-0.196
176583874317:65838743:T:Grs8074078GIntronicBPTF0.186
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.184
194756900319:47569003:G:Ars3810291AUTRZC3H40.181
51458953945:145895394:G:Ars114285050APTVsGPR151-0.179
185783976918:57839769:C:Ars571312AOthers0.175
26357212:635721:T:Crs6755502COthers0.172
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-0.172
31413266023:141326602:T:Crs295322CPAVsRASA20.172
142968532814:29685328:G:Ars974471AOthers0.171
147994516214:79945162:A:Grs10146997GIntronicNRXN30.167
107396424310:73964243:G:Crs11000217CPTVsASCC10.165
125024746812:50247468:G:Ars7138803AOthers0.164
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.163
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.157
16401346716:4013467:C:Trs2531995TUTRADCY90.157
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.154
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.154
8734390708:73439070:A:Grs1431659GOthers-0.149
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.145
109977240410:99772404:G:Ars563296AIntronicCRTAC10.141
201581949520:15819495:A:Grs8123881GIntronicMACROD20.141
2251415382:25141538:A:Grs11676272GPAVsADCY30.141
1212308744212:123087442:A:Grs7307735GPAVsKNTC10.141
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.137
81382152288:138215228:G:Ars16906845AOthers-0.137
3499249403:49924940:T:Crs1062633CPAVsMST1R0.137
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.137
1211716097612:117160976:T:Crs10507274CPAVsC12orf49-0.137
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.137
11499064131:149906413:T:Crs11205303CPAVsMTMR110.137
8772282228:77228222:A:Grs1405348GOthers0.136
184260609118:42606091:C:Trs9967367TIntronicSETBP1-0.135
165375688516:53756885:A:Grs76488452GIntronicFTO0.135
156745769815:67457698:A:Grs35874463GPAVsSMAD30.133
31858223533:185822353:T:Grs10513801GIntronicETV5-0.132
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.131
115463041:1546304:C:Trs11492279TOthersMIB2-0.130
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.128
162037081016:20370810:C:Trs9652588TPAVsPDILT-0.128
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.127
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.127
182112044418:21120444:T:Crs1805082CPAVsNPC1-0.126
1786236261:78623626:C:Trs17391694TOthers0.126
11102107801:110210780:C:Grs530021GPAVsGSTM2-0.125
41002393194:100239319:T:Crs1229984CPAVsADH1B0.124
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.124
114365653511:43656535:G:Ars2862961AIntronicHSD17B12-0.123
5877300275:87730027:A:Grs7444298GOthersCTC-498M16.4-0.122
1728357401:72835740:G:Ars2613504AOthers0.121
1010243304610:102433046:C:Trs11190644TOthers0.121
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.121
7774235607:77423560:ATCCAGACTGGAATG:Ars866484129APTVsTMEM600.121
51535378935:153537893:G:Trs7715256TIntronicMFAP3-0.120
158941524715:89415247:C:Grs3817428GPAVsACAN-0.120
6131892756:13189275:T:Crs9367368CIntronicPHACTR1-0.120
167126456116:71264561:A:Grs3743953GPTVsHYDIN-0.119
1779675231:77967523:C:Trs12049202TIntronicAK50.118
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.118
6403719186:40371918:C:Trs1579557TIntronicLRFN20.118
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.117
6348246366:34824636:A:Grs11755393GPAVsUHRF1BP10.117
21008300402:100830040:T:Crs4303732CIntronicLINC01104-0.117
9284143399:28414339:A:Grs10968576GIntronicLINGO20.117
134075977313:40759773:T:Crs10507483CIntronicLINC003320.116
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.116
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.115
1212048863612:120488636:G:Ars5028648AIntronicCCDC64-0.114
166966668316:69666683:G:Ars244415AIntronicNFAT5-0.114
3517550653:51755065:T:Crs4687770COthersGRM2-0.113
3124269363:12426936:G:Trs10510419TIntronicPPARG-0.113
4652270494:65227049:T:Crs7678517CIntronicTECRL-0.112
102183010410:21830104:A:Grs11012732GIntronicMLLT100.112
204636563620:46365636:C:Trs56218501TPAVsSULF2-0.111
7766081437:76608143:C:Trs2245368TOthersDTX2P1-0.111
22368176292:236817629:C:Trs4663215TIntronicAGAP1-0.111
8308543798:30854379:T:Crs17648656CIntronicPURG-0.110
154085698915:40856989:C:Trs3803354TPTVsC15orf57-0.110
51039440205:103944020:G:Trs254024TIntronicRP11-6N13.10.110
19224562219:2245622:G:Ars45521740AOthersSF3A20.109
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.109
158458212415:84582124:G:Trs4842838TPAVsADAMTSL30.109
2354635562:35463556:G:Ars1837452AOthers-0.108
5957288985:95728898:C:Grs6235GPAVsPCSK10.108
41370060614:137006061:T:Crs2222654COthers0.108
21422935112:142293511:A:Grs13008033GIntronicLRP1B-0.107
91341050489:134105048:A:Grs28665311GPTVsNUP214-0.107
147063341114:70633411:C:Trs41286548TPAVsSLC8A3-0.107
1210427371812:104273718:C:Trs17180749TIntronicRP11-642P15.10.107
41027093084:102709308:T:Crs11097755CIntronicBANK10.107
162888324116:28883241:A:Grs7498665GPAVsSH2B10.105
1321654951:32165495:G:Trs2228552TPAVsCOL16A10.105

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 33555 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References