Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Whole body fat-free mass


Whole body fat-free mass iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23101/INI23101.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23101/INI23101.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23101/INI23101.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23101/INI23101.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23101/INI23101.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.709[0.706, 0.713]<1.0x10-300
white BritishGenotype-only modelR20.053[0.050, 0.057]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.763[0.760, 0.766]<1.0x10-300
Non-British whiteCovariate-only modelR20.706[0.688, 0.724]<1.0x10-300
Non-British whiteGenotype-only modelR20.063[0.046, 0.080]7.8x10-42
Non-British whiteFull model (covariates and genotypes)R20.763[0.747, 0.778]<1.0x10-300
South AsianCovariate-only modelR20.650[0.622, 0.679]<1.0x10-300
South AsianGenotype-only modelR20.030[0.013, 0.046]4.1x10-11
South AsianFull model (covariates and genotypes)R20.695[0.669, 0.721]<1.0x10-300
AfricanCovariate-only modelR20.583[0.548, 0.619]1.6x10-223
AfricanGenotype-only modelR20.007[-0.002, 0.016]4.3x10-03
AfricanFull model (covariates and genotypes)R20.585[0.550, 0.621]1.0x10-224
OthersCovariate-only modelR20.711[0.700, 0.722]<1.0x10-300
OthersGenotype-only modelR20.040[0.031, 0.048]5.9x10-71
OthersFull model (covariates and genotypes)R20.751[0.741, 0.760]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23101/INI23101.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 42786 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
24171672:417167:T:Crs62106258COthersAC105393.2-0.369
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.305
165380095416:53800954:T:Crs1421085CIntronicFTO0.286
6198394156:19839415:C:Trs41271299TIntronicID40.285
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-0.262
158940068015:89400680:A:Grs28407189GPAVsACAN-0.243
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.238
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.236
2277309402:27730940:T:Crs1260326CPAVsGCKR0.233
203402575620:34025756:A:Grs143384GUTRGDF50.232
81205960238:120596023:A:Grs10283100GPAVsENPP20.231
135072289513:50722895:C:Ars1326122AIntronicDLEU10.228
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.210
109603959710:96039597:G:Crs2274224CPAVsPLCE10.202
146097653714:60976537:C:Ars33912345APAVsSIX6-0.194
31855486833:185548683:G:Ars720390AOthers0.190
5828151705:82815170:A:Grs61749613GPAVsVCAN0.185
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.185
11549913891:154991389:T:Crs905938CIntronicDCST20.179
11778894801:177889480:A:Grs543874GOthersSEC16B0.169
4180254844:18025484:G:Ars2011603AOthersLCORL-0.168
125714606912:57146069:T:Grs2277339GPAVsPRIM1-0.167
195587967219:55879672:C:Trs4252548TPAVsIL11-0.161
1786236261:78623626:C:Trs17391694TOthers0.161
31411060633:141106063:T:Crs7632381COthersZBTB380.158
51227333175:122733317:G:Ars7711753AIntronicCEP120-0.158
413415534:1341553:A:Grs111391498GPAVsUVSSA-0.154
185785176318:57851763:A:Grs10871777GOthers0.150
2333595652:33359565:G:Ars116713089AUTRLTBP1-0.148
12010162961:201016296:G:Ars3850625APAVsCACNA1S-0.144
1212482646212:124826462:C:Trs2229840TPAVsNCOR20.142
156745769815:67457698:A:Grs35874463GPAVsSMAD30.142
112767991611:27679916:C:Trs6265TPAVsBDNF-0.138
21724129072:172412907:A:Crs3821083CUTRCYBRD1-0.138
81356498488:135649848:G:Ars12541381APAVsZFAT-0.136
185783976918:57839769:C:Ars571312AOthers0.135
11767940661:176794066:G:Ars1325596AIntronicPAPPA20.133
51682562405:168256240:G:Ars4282339AIntronicSLIT3-0.132
41455651164:145565116:G:Ars7680661AIntronicHHIP-AS10.132
5774412995:77441299:C:Ars10755299AIntronicAP3B1-0.132
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.131
31413266023:141326602:T:Crs295322CPAVsRASA20.131
8777619198:77761919:C:Trs61729527TPAVsZFHX4-0.131
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.129
195599343619:55993436:G:Trs147110934TPAVsZNF628-0.129
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN10.128
61266987196:126698719:A:Grs9388489GOthers0.127
17758005217:7580052:C:Trs8079544TIntronicTP530.126
61303491196:130349119:C:Trs6569648TIntronicL3MBTL3-0.125
11281073111:2810731:C:Trs2237886TIntronicKCNQ10.124
161994436316:19944363:A:Grs11639988GOthers-0.123
41551604244:155160424:A:ACrs546143621ACPTVsDCHS2-0.123
31721634493:172163449:G:Ars509035AIntronicGHSR0.123
X78649193X:78649193:C:Trs1474563TOthers0.122
51025372855:102537285:A:Grs36046591GPAVsPPIP5K2-0.122
12185964611:218596461:A:Grs6657275GIntronicTGFB20.122
158938665215:89386652:G:Ars34949187APAVsACAN-0.121
71505545537:150554553:C:Trs1049742TPAVsAOC1-0.120
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.120
12336809312:3368093:G:Ars10491967AIntronicTSPAN90.118
31719690773:171969077:C:Grs7652177GPAVsFNDC3B0.116
121287109912:12871099:T:Grs2066827GPAVsCDKN1B-0.115
194756900319:47569003:G:Ars3810291AUTRZC3H40.115
X102529190X:102529190:C:Grs6621640GPAVsTCEAL5-0.114
221762591522:17625915:G:Ars35665085APAVsCECR5-0.114
172923674517:29236745:G:Ars35958868AIntronicADAP2-0.114
3116404813:11640481:A:Grs17776719GIntronicVGLL40.111
31289711133:128971113:T:Crs4927953CPAVsCOPG10.111
213967147621:39671476:G:Ars2230033APAVsKCNJ15-0.110
9983199699:98319969:T:Crs17370391COthers0.110
7922589617:92258961:C:Trs17766836TIntronicCDK60.110
31290207783:129020778:A:Grs6765930GPAVsHMCES0.109
147043918514:70439185:C:Ars7152091AIntronicSMOC10.109
12146222531:214622253:C:Trs10494977TIntronicPTPN14-0.109
224207037422:42070374:A:Crs41311445CUTRNHP2L1-0.109
1012667167310:126671673:T:Crs2241541CIntronicZRANB10.108
163003363316:30033633:T:Crs12325539CIntronicDOC2A0.108
6418776716:41877671:G:Ars114056237AIntronicMED20-0.108
91191292579:119129257:T:Crs7033487CIntronicPAPPA-0.107
145092324914:50923249:C:Trs12881869TPAVsMAP4K5-0.107
1010226908510:102269085:C:Ars3793706APAVsSEC31B-0.106
10497644210:4976442:C:Ars7922153AIntronicAKR1C1-0.106
159919489615:99194896:C:Grs2871865GIntronicIGF1R-0.105
126634981212:66349812:A:Grs17179670GUTRHMGA2-0.104
16226787716:2267877:G:Ars27345AOthersPGP0.104
1410389200014:103892000:G:Ars10148970AIntronicMARK3-0.104
71506805067:150680506:T:Grs4496877GOthers0.104
147994264714:79942647:G:Ars7156625AIntronicNRXN30.103
126635182612:66351826:T:Crs1351394CUTRHMGA2-0.103
5957288985:95728898:C:Grs6235GPAVsPCSK10.103
22115405072:211540507:C:Ars1047891APAVsCPS10.103
677200596:7720059:G:Ars12198986AOthers0.102
126624705112:66247051:C:Trs11834900TIntronicHMGA2, RP11-366L20.2-0.102
51766374715:176637471:G:Ars28932177APAVsNSD10.101
4179535904:17953590:A:Grs16896128GIntronicLCORL-0.101
1510171823915:101718239:C:Grs62621400GPAVsCHSY1-0.101
107958097610:79580976:G:Ars41274586APAVsDLG5-0.101
61089881846:108988184:G:Ars2153960AIntronicFOXO30.101
5427192395:42719239:A:Crs6180CPAVsGHR-0.100
61303412356:130341235:T:Crs113898003CIntronicL3MBTL3-0.100

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 42786 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References