Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Whole body water mass


Whole body water mass iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23102/INI23102.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23102/INI23102.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23102/INI23102.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23102/INI23102.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23102/INI23102.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.706[0.702, 0.710]<1.0x10-300
white BritishGenotype-only modelR20.054[0.050, 0.057]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.760[0.757, 0.763]<1.0x10-300
Non-British whiteCovariate-only modelR20.700[0.682, 0.718]<1.0x10-300
Non-British whiteGenotype-only modelR20.066[0.048, 0.083]6.3x10-44
Non-British whiteFull model (covariates and genotypes)R20.758[0.743, 0.773]<1.0x10-300
South AsianCovariate-only modelR20.648[0.620, 0.677]<1.0x10-300
South AsianGenotype-only modelR20.030[0.013, 0.047]3.5x10-11
South AsianFull model (covariates and genotypes)R20.693[0.667, 0.719]<1.0x10-300
AfricanCovariate-only modelR20.581[0.545, 0.617]3.2x10-222
AfricanGenotype-only modelR20.008[-0.002, 0.018]2.3x10-03
AfricanFull model (covariates and genotypes)R20.584[0.548, 0.619]8.9x10-224
OthersCovariate-only modelR20.709[0.699, 0.720]<1.0x10-300
OthersGenotype-only modelR20.039[0.031, 0.048]1.5x10-70
OthersFull model (covariates and genotypes)R20.749[0.739, 0.758]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23102/INI23102.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 43166 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
24171672:417167:T:Crs62106258COthersAC105393.2-0.274
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.225
165380095416:53800954:T:Crs1421085CIntronicFTO0.210
6198394156:19839415:C:Trs41271299TIntronicID40.202
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-0.189
158940068015:89400680:A:Grs28407189GPAVsACAN-0.179
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.176
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.175
2277309402:27730940:T:Crs1260326CPAVsGCKR0.173
81205960238:120596023:A:Grs10283100GPAVsENPP20.171
203402575620:34025756:A:Grs143384GUTRGDF50.168
135072289513:50722895:C:Ars1326122AIntronicDLEU10.165
109603959710:96039597:G:Crs2274224CPAVsPLCE10.151
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.150
146097653714:60976537:C:Ars33912345APAVsSIX6-0.142
5828151705:82815170:A:Grs61749613GPAVsVCAN0.139
31855486833:185548683:G:Ars720390AOthers0.136
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.134
11549913891:154991389:T:Crs905938CIntronicDCST20.133
4180254844:18025484:G:Ars2011603AOthersLCORL-0.125
125714606912:57146069:T:Grs2277339GPAVsPRIM1-0.123
11778894801:177889480:A:Grs543874GOthersSEC16B0.121
195587967219:55879672:C:Trs4252548TPAVsIL11-0.120
413415534:1341553:A:Grs111391498GPAVsUVSSA-0.120
31411060633:141106063:T:Crs7632381COthersZBTB380.118
1786236261:78623626:C:Trs17391694TOthers0.116
51227333175:122733317:G:Ars7711753AIntronicCEP120-0.114
185785176318:57851763:A:Grs10871777GOthers0.109
12010162961:201016296:G:Ars3850625APAVsCACNA1S-0.106
2333595652:33359565:G:Ars116713089AUTRLTBP1-0.105
1212482646212:124826462:C:Trs2229840TPAVsNCOR20.103
156745769815:67457698:A:Grs35874463GPAVsSMAD30.103
81356498488:135649848:G:Ars12541381APAVsZFAT-0.099
112767991611:27679916:C:Trs6265TPAVsBDNF-0.099
185783976918:57839769:C:Ars571312AOthers0.098
11767940661:176794066:G:Ars1325596AIntronicPAPPA20.098
31413266023:141326602:T:Crs295322CPAVsRASA20.098
21724129072:172412907:A:Crs3821083CUTRCYBRD1-0.098
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.097
51682562405:168256240:G:Ars4282339AIntronicSLIT3-0.097
5774412995:77441299:C:Ars10755299AIntronicAP3B1-0.097
61266987196:126698719:A:Grs9388489GOthers0.096
41455651164:145565116:G:Ars7680661AIntronicHHIP-AS10.095
8777619198:77761919:C:Trs61729527TPAVsZFHX4-0.095
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.094
12185964611:218596461:A:Grs6657275GIntronicTGFB20.094
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN10.094
41551604244:155160424:A:ACrs546143621ACPTVsDCHS2-0.092
161994436316:19944363:A:Grs11639988GOthers-0.091
71505545537:150554553:C:Trs1049742TPAVsAOC1-0.091
17758005217:7580052:C:Trs8079544TIntronicTP530.090
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.090
31721634493:172163449:G:Ars509035AIntronicGHSR0.090
X78649193X:78649193:C:Trs1474563TOthers0.089
158938665215:89386652:G:Ars34949187APAVsACAN-0.088
61303491196:130349119:C:Trs6569648TIntronicL3MBTL3-0.088
195599343619:55993436:G:Trs147110934TPAVsZNF628-0.088
221762591522:17625915:G:Ars35665085APAVsCECR5-0.087
194756900319:47569003:G:Ars3810291AUTRZC3H40.087
51025372855:102537285:A:Grs36046591GPAVsPPIP5K2-0.087
6418776716:41877671:G:Ars114056237AIntronicMED20-0.086
31289711133:128971113:T:Crs4927953CPAVsCOPG10.086
31719690773:171969077:C:Grs7652177GPAVsFNDC3B0.085
11281073111:2810731:C:Trs2237886TIntronicKCNQ10.085
121287109912:12871099:T:Grs2066827GPAVsCDKN1B-0.084
172923674517:29236745:G:Ars35958868AIntronicADAP2-0.083
X102529190X:102529190:C:Grs6621640GPAVsTCEAL5-0.083
3116404813:11640481:A:Grs17776719GIntronicVGLL40.082
213967147621:39671476:G:Ars2230033APAVsKCNJ15-0.082
12336809312:3368093:G:Ars10491967AIntronicTSPAN90.081
126624705112:66247051:C:Trs11834900TIntronicHMGA2, RP11-366L20.2-0.081
31290207783:129020778:A:Grs6765930GPAVsHMCES0.080
9983199699:98319969:T:Crs17370391COthers0.079
7922589617:92258961:C:Trs17766836TIntronicCDK60.079
163003363316:30033633:T:Crs12325539CIntronicDOC2A0.079
1010226908510:102269085:C:Ars3793706APAVsSEC31B-0.079
12146222531:214622253:C:Trs10494977TIntronicPTPN14-0.079
1012667167310:126671673:T:Crs2241541CIntronicZRANB10.079
16226787716:2267877:G:Ars27345AOthersPGP0.078
159919489615:99194896:C:Grs2871865GIntronicIGF1R-0.078
224207037422:42070374:A:Crs41311445CUTRNHP2L1-0.077
31839761033:183976103:C:Trs11546878TPAVsECE2-0.077
71506805067:150680506:T:Grs4496877GOthers0.077
5957288985:95728898:C:Grs6235GPAVsPCSK10.077
147043918514:70439185:C:Ars7152091AIntronicSMOC10.077
4543426584:54342658:G:Trs6855607TIntronicFIP1L1, LNX1-0.077
1410389200014:103892000:G:Ars10148970AIntronicMARK3-0.076
10497644210:4976442:C:Ars7922153AIntronicAKR1C1-0.076
107958097610:79580976:G:Ars41274586APAVsDLG5-0.076
61097645356:109764535:G:Trs1476387TPAVsSMPD2-0.075
X38009121X:38009121:G:Ars35318931APAVsSRPX-0.075
677200596:7720059:G:Ars12198986AOthers0.075
147994264714:79942647:G:Ars7156625AIntronicNRXN30.075
22115405072:211540507:C:Ars1047891APAVsCPS10.075
1510171823915:101718239:C:Grs62621400GPAVsCHSY1-0.075
126634981212:66349812:A:Grs17179670GUTRHMGA2-0.075
81382152288:138215228:G:Ars16906845AOthers-0.075
8493822768:49382276:C:Trs10110839TOthers0.075
61303412356:130341235:T:Crs113898003CIntronicL3MBTL3-0.074
19217076419:2170764:T:Crs2108524CIntronicDOT1L0.074

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 43166 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References