Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Basal metabolic rate


Basal metabolic rate iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23105/INI23105.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23105/INI23105.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23105/INI23105.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23105/INI23105.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23105/INI23105.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.630[0.625, 0.634]<1.0x10-300
white BritishGenotype-only modelR20.063[0.059, 0.067]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.693[0.689, 0.697]<1.0x10-300
Non-British whiteCovariate-only modelR20.623[0.602, 0.645]<1.0x10-300
Non-British whiteGenotype-only modelR20.076[0.058, 0.095]5.9x10-51
Non-British whiteFull model (covariates and genotypes)R20.691[0.672, 0.710]<1.0x10-300
South AsianCovariate-only modelR20.561[0.527, 0.594]7.8x10-262
South AsianGenotype-only modelR20.039[0.020, 0.058]3.3x10-14
South AsianFull model (covariates and genotypes)R20.614[0.583, 0.645]1.1x10-302
AfricanCovariate-only modelR20.466[0.425, 0.507]8.4x10-161
AfricanGenotype-only modelR20.009[-0.002, 0.019]1.3x10-03
AfricanFull model (covariates and genotypes)R20.470[0.429, 0.511]9.8x10-163
OthersCovariate-only modelR20.636[0.623, 0.648]<1.0x10-300
OthersGenotype-only modelR20.051[0.042, 0.060]2.0x10-91
OthersFull model (covariates and genotypes)R20.682[0.671, 0.694]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23105/INI23105.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 46752 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
185803927618:58039276:C:Trs2229616TPAVsMC4R-34.982
24171672:417167:T:Crs62106258COthersAC105393.2-32.924
6198394156:19839415:C:Trs41271299TIntronicID429.881
2277309402:27730940:T:Crs1260326CPAVsGCKR26.305
158940068015:89400680:A:Grs28407189GPAVsACAN-26.057
149484494714:94844947:C:Trs28929474TPAVsSERPINA126.020
165380095416:53800954:T:Crs1421085CIntronicFTO25.921
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-25.366
81205960238:120596023:A:Grs10283100GPAVsENPP225.148
203402575620:34025756:A:Grs143384GUTRGDF523.797
116702453411:67024534:C:Trs7952436TUTRKDM2A-21.911
6342143226:34214322:C:Grs1150781GPAVsC6orf1-21.596
31855486833:185548683:G:Ars720390AOthers21.030
11549913891:154991389:T:Crs905938CIntronicDCST220.614
194618139219:46181392:G:Crs1800437CPAVsGIPR-19.506
1786236261:78623626:C:Trs17391694TOthers19.167
109603959710:96039597:G:Crs2274224CPAVsPLCE118.897
156745769815:67457698:A:Grs35874463GPAVsSMAD318.596
24660032:466003:G:Ars62104180AOthers-18.410
125714606912:57146069:T:Grs2277339GPAVsPRIM1-18.402
135072289513:50722895:C:Ars1326122AIntronicDLEU118.195
146097653714:60976537:C:Ars33912345APAVsSIX6-17.575
1212482646212:124826462:C:Trs2229840TPAVsNCOR217.059
112767991611:27679916:C:Trs6265TPAVsBDNF-16.938
413415534:1341553:A:Grs111391498GPAVsUVSSA-16.859
2333595652:33359565:G:Ars116713089AUTRLTBP1-16.572
81356498488:135649848:G:Ars12541381APAVsZFAT-16.519
194756900319:47569003:G:Ars3810291AUTRZC3H416.095
12010162961:201016296:G:Ars3850625APAVsCACNA1S-16.069
185783976918:57839769:C:Ars571312AOthers15.575
5828151705:82815170:A:Grs61749613GPAVsVCAN15.484
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN115.482
21724129072:172412907:A:Crs3821083CUTRCYBRD1-15.037
31719690773:171969077:C:Grs7652177GPAVsFNDC3B14.718
31413266023:141326602:T:Crs295322CPAVsRASA214.627
121287109912:12871099:T:Grs2066827GPAVsCDKN1B-14.556
51682562405:168256240:G:Ars4282339AIntronicSLIT3-14.362
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-14.285
X78649193X:78649193:C:Trs1474563TOthers14.280
185785176318:57851763:A:Grs10871777GOthers14.171
3116404813:11640481:A:Grs17776719GIntronicVGLL414.041
16401346716:4013467:C:Trs2531995TUTRADCY913.981
X117904229X:117904229:T:Crs2248846CPTVsIL13RA113.779
195587967219:55879672:C:Trs4252548TPAVsIL11-13.768
213967147621:39671476:G:Ars2230033APAVsKCNJ15-13.686
11281073111:2810731:C:Trs2237886TIntronicKCNQ113.671
71505545537:150554553:C:Trs1049742TPAVsAOC1-13.581
158938665215:89386652:G:Ars34949187APAVsACAN-13.441
41551604244:155160424:A:ACrs546143621ACPTVsDCHS2-13.439
8777619198:77761919:C:Trs61729527TPAVsZFHX4-13.419
11778894801:177889480:A:Grs543874GOthersSEC16B13.404
5957288985:95728898:C:Grs6235GPAVsPCSK113.316
31721634493:172163449:G:Ars509035AIntronicGHSR13.247
81382152288:138215228:G:Ars16906845AOthers-13.173
31289711133:128971113:T:Crs4927953CPAVsCOPG113.161
1010226908510:102269085:C:Ars3793706APAVsSEC31B-13.141
31839761033:183976103:C:Trs11546878TPAVsECE2-13.086
31290207783:129020778:A:Grs6765930GPAVsHMCES13.037
X38009121X:38009121:G:Ars35318931APAVsSRPX-12.887
172923674517:29236745:G:Ars35958868AIntronicADAP2-12.749
134275170713:42751707:T:Crs12585865CIntronicDGKH-12.695
16226787716:2267877:G:Ars27345AOthersPGP12.673
6508030506:50803050:A:Grs987237GIntronicTFAP2B12.593
12146222531:214622253:C:Trs10494977TIntronicPTPN14-12.554
51025372855:102537285:A:Grs36046591GPAVsPPIP5K2-12.552
61303491196:130349119:C:Trs6569648TIntronicL3MBTL3-12.552
185785109718:57851097:T:Crs17782313COthers12.551
4180254844:18025484:G:Ars2011603AOthersLCORL-12.471
61303412356:130341235:T:Crs113898003CIntronicL3MBTL3-12.469
17758005217:7580052:C:Trs8079544TIntronicTP5312.335
221762591522:17625915:G:Ars35665085APAVsCECR5-12.292
6316321346:31632134:C:Ars3130618APAVsGPANK112.273
5774412995:77441299:C:Ars10755299AIntronicAP3B1-12.124
91191292579:119129257:T:Crs7033487CIntronicPAPPA-12.084
1510171823915:101718239:C:Grs62621400GPAVsCHSY1-11.988
X102529190X:102529190:C:Grs6621640GPAVsTCEAL5-11.975
41027093084:102709308:T:Crs11097755CIntronicBANK111.969
6366456966:36645696:A:Grs2395655GPAVsCDKN1A11.935
126635182612:66351826:T:Crs1351394CUTRHMGA2-11.792
22115405072:211540507:C:Ars1047891APAVsCPS111.783
1779675231:77967523:C:Trs12049202TIntronicAK511.600
672408766:7240876:G:Ars41302867AIntronicRREB1-11.568
126634981212:66349812:A:Grs17179670GUTRHMGA2-11.512
125024746812:50247468:G:Ars7138803AOthers11.428
203230827520:32308275:C:Trs67611724TOthersPXMP4-11.424
1213339332312:133393323:C:Trs2291256TPAVsGOLGA311.411
12336809312:3368093:G:Ars10491967AIntronicTSPAN911.357
165347425016:53474250:G:Ars16952242AIntronicRBL211.281
728018037:2801803:C:Trs798489TPTVsGNA12-11.261
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-11.226
51766374715:176637471:G:Ars28932177APAVsNSD111.217
81303825528:130382552:T:Crs16904052CPTVsCCDC2611.094
147994264714:79942647:G:Ars7156625AIntronicNRXN310.999
171188135617:11881356:G:Ars117755721APAVsZNF18-10.997
159919489615:99194896:C:Grs2871865GIntronicIGF1R-10.953
5427192395:42719239:A:Crs6180CPAVsGHR-10.940
71486508187:148650818:G:Ars822553AOthers10.886
51343645185:134364518:C:Grs479632GPAVsPITX1-10.885
61517217496:151721749:G:Ars7771156AOthersRMND110.852
6341657216:34165721:A:Grs7742369GOthers10.772

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 46752 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References