Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Impedance of whole body


Impd. of whole body iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23106/INI23106.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23106/INI23106.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23106/INI23106.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23106/INI23106.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23106/INI23106.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.439[0.433, 0.444]<1.0x10-300
white BritishGenotype-only modelR20.085[0.081, 0.089]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.522[0.517, 0.528]<1.0x10-300
Non-British whiteCovariate-only modelR20.426[0.399, 0.453]<1.0x10-300
Non-British whiteGenotype-only modelR20.082[0.063, 0.101]1.3x10-54
Non-British whiteFull model (covariates and genotypes)R20.507[0.481, 0.532]<1.0x10-300
South AsianCovariate-only modelR20.360[0.321, 0.399]8.4x10-143
South AsianGenotype-only modelR20.056[0.033, 0.078]6.9x10-20
South AsianFull model (covariates and genotypes)R20.417[0.379, 0.456]1.0x10-172
AfricanCovariate-only modelR20.254[0.212, 0.297]3.1x10-76
AfricanGenotype-only modelR20.027[0.009, 0.045]1.7x10-08
AfricanFull model (covariates and genotypes)R20.279[0.236, 0.322]8.0x10-85
OthersCovariate-only modelR20.441[0.425, 0.458]<1.0x10-300
OthersGenotype-only modelR20.053[0.043, 0.063]9.6x10-95
OthersFull model (covariates and genotypes)R20.492[0.477, 0.508]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23106/INI23106.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 42265 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
24171672:417167:T:Crs62106258COthersAC105393.24.269
109603959710:96039597:G:Crs2274224CPAVsPLCE1-3.910
5828151705:82815170:A:Grs61749613GPAVsVCAN-3.576
165380095416:53800954:T:Crs1421085CIntronicFTO-3.326
162495088016:24950880:C:Trs78457529TPAVsARHGAP173.022
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-2.880
158941524715:89415247:C:Grs3817428GPAVsACAN-2.405
4735152424:73515242:A:Grs16845048GOthers2.355
11551750891:155175089:C:Trs72704117TPAVsTHBS3-2.338
11499064131:149906413:T:Crs11205303CPAVsMTMR112.259
112767991611:27679916:C:Trs6265TPAVsBDNF2.211
12010162961:201016296:G:Ars3850625APAVsCACNA1S2.004
11778894801:177889480:A:Grs543874GOthersSEC16B-1.937
185803927618:58039276:C:Trs2229616TPAVsMC4R1.931
5558073705:55807370:C:Trs464605TOthersAC022431.2-1.916
2277309402:27730940:T:Crs1260326CPAVsGCKR-1.853
11549913891:154991389:T:Crs905938CIntronicDCST2-1.812
51765202435:176520243:G:Ars351855APAVsFGFR4-1.714
161994436316:19944363:A:Grs11639988GOthers1.708
194756900319:47569003:G:Ars3810291AUTRZC3H4-1.690
4735153134:73515313:T:Crs7697556COthers-1.589
51273505495:127350549:C:Trs3749748TIntronicCTC-228N24.3-1.560
149484494714:94844947:C:Trs28929474TPAVsSERPINA11.552
X68381264X:68381264:C:Ars11539157APAVsPJA11.536
185785109718:57851097:T:Crs17782313COthers-1.527
166751694516:67516945:C:Trs5030980TPAVsAGRP-1.525
6862572296:86257229:T:Grs41271629GPAVsSNX141.489
X67652748X:67652748:C:Trs41303733TPAVsOPHN11.476
158458212415:84582124:G:Trs4842838TPAVsADAMTSL31.434
4254088384:25408838:G:Ars34811474APAVsANAPC41.426
81205960238:120596023:A:Grs10283100GPAVsENPP2-1.425
149311112014:93111120:C:Trs11624512TOthersRIN3-1.418
21724129072:172412907:A:Crs3821083CUTRCYBRD11.417
6508030506:50803050:A:Grs987237GIntronicTFAP2B-1.413
125714606912:57146069:T:Grs2277339GPAVsPRIM11.410
22203555292:220355529:A:Grs12464085GPAVsSPEG1.372
1104242521:10424252:C:Trs11121548TIntronicKIF1B1.362
9982483289:98248328:A:Grs2282040GIntronicPTCH1-1.347
145092324914:50923249:C:Trs12881869TPAVsMAP4K51.301
4543394784:54339478:T:Crs12505040CIntronicFIP1L1, LNX11.296
124814331512:48143315:A:Grs145878042GPAVsRAPGEF3-1.287
450168834:5016883:G:Ars11722554APAVsCYTL1-1.280
41456590644:145659064:T:Crs11727676CPCVsHHIP1.259
156231603515:62316035:C:Trs12595158TPAVsVPS13C1.242
109606634110:96066341:A:Grs2274223GPAVsPLCE11.220
202112054320:21120543:C:Trs4815021TIntronicPLK1S11.208
71505545537:150554553:C:Trs1049742TPAVsAOC11.177
165375688516:53756885:A:Grs76488452GIntronicFTO-1.173
9785151959:78515195:A:Grs35650604GIntronicPCSK5-1.172
1510051461415:100514614:T:Crs2573652CPAVsADAMTS171.164
185790529518:57905295:C:Trs9966504TOthers1.162
7730120427:73012042:G:Ars35332062APAVsMLXIPL-1.152
124839692012:48396920:G:Trs12228854TIntronicCOL2A11.151
X117904229X:117904229:T:Crs2248846CPTVsIL13RA1-1.139
2693047192:69304719:T:Crs7424907CIntronicANTXR1-1.138
125764864412:57648644:C:Trs78607331TPAVsR3HDM2-1.122
2406914682:40691468:C:Ars11679585AIntronicSLC8A1-1.119
51082182635:108218263:A:Grs4560594GIntronicFER1.108
203983262820:39832628:T:Crs17265513CPAVsZHX31.105
8368471158:36847115:T:Crs10110651COthersAC090453.1-1.094
3499249403:49924940:T:Crs1062633CPAVsMST1R-1.092
31839761033:183976103:C:Trs11546878TPAVsECE21.078
5645614455:64561445:C:Trs10940024TIntronicADAMTS61.076
1931609021:93160902:T:Crs2391199CPAVsEVI51.069
156751634115:67516341:T:Crs9806590CIntronicAAGAB-1.047
22115405072:211540507:C:Ars1047891APAVsCPS1-1.046
168998611716:89986117:C:Trs1805007TPAVsMC1R, TUBB3-1.044
11767940661:176794066:G:Ars1325596AIntronicPAPPA2-1.040
142331259414:23312594:G:Ars1042704APAVsMMP141.038
154199131515:41991315:A:Trs2178004TPAVsMGA1.021
17211910117:2119101:C:Trs11655813TIntronicSMG6, AC130689.5-1.017
176505230417:65052304:G:Ars1799938APAVsCACNG1-1.013
61089948266:108994826:G:Ars9398172AIntronicFOXO3-1.009
236347532:3634753:T:Crs4850047COthers-1.006
9944863219:94486321:C:Trs10761129TPAVsROR2-1.004
41551604244:155160424:A:ACrs546143621ACPTVsDCHS20.996
71388171937:138817193:T:Crs11525873COthersTTC260.989
18910420418:9104204:G:GCrs139009723GCPTVsNDUFV20.989
6347644436:34764443:A:Grs6457792GIntronicUHRF1BP1-0.988
21007511502:100751150:C:Trs11677607TIntronicAFF30.982
146097653714:60976537:C:Ars33912345APAVsSIX60.977
158454016315:84540163:A:Grs4572348GIntronicADAMTSL3-0.972
176199517017:61995170:C:Trs5388TPAVsGH1-0.970
12018692571:201869257:G:Ars2820312APAVsLMOD1-0.968
4832182304:83218230:T:Crs6822283COthers-0.964
22053777052:205377705:A:Grs10804139GOthers0.963
31858223533:185822353:T:Grs10513801GIntronicETV50.961
1398788151:39878815:A:Grs1746842GPAVsKIAA07540.960
157423143915:74231439:C:Trs12440667TIntronicLOXL1-0.957
2335779652:33577965:C:Trs17584334TIntronicLTBP10.956
5558618945:55861894:G:Ars9687846AIntronicAC022431.2-0.954
109609837310:96098373:C:Trs17517578TPAVsNOC3L0.948
195036358519:50363585:CAG:Crs200876443CUTRPTOV1-0.946
2434605142:43460514:C:Ars1549723AOthersAC010883.50.946
12333426612:3334266:G:Trs3782816TIntronicTSPAN9-0.943
222078029622:20780296:G:Ars9680797APAVsSCARF20.937
11510158681:151015868:G:Ars12068365APAVsBNIPL0.934
3123931253:12393125:C:Grs1801282GPAVsPPARG0.934
201062250120:10622501:G:Crs35761929CPAVsJAG1-0.929
162453979316:24539793:C:Trs17767765TOthers0.920

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 42265 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References