Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Impedance of leg (right)


Impd. of leg R iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23107/INI23107.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23107/INI23107.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23107/INI23107.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23107/INI23107.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23107/INI23107.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.193[0.188, 0.198]<1.0x10-300
white BritishGenotype-only modelR20.111[0.107, 0.116]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.303[0.297, 0.309]<1.0x10-300
Non-British whiteCovariate-only modelR20.189[0.164, 0.215]3.3x10-131
Non-British whiteGenotype-only modelR20.105[0.084, 0.127]1.2x10-70
Non-British whiteFull model (covariates and genotypes)R20.297[0.269, 0.325]3.5x10-219
South AsianCovariate-only modelR20.113[0.083, 0.143]1.1x10-39
South AsianGenotype-only modelR20.074[0.048, 0.099]4.9x10-26
South AsianFull model (covariates and genotypes)R20.186[0.150, 0.221]8.4x10-67
AfricanCovariate-only modelR20.056[0.031, 0.081]3.1x10-16
AfricanGenotype-only modelR20.018[0.003, 0.032]5.3x10-06
AfricanFull model (covariates and genotypes)R20.073[0.045, 0.101]6.2x10-21
OthersCovariate-only modelR20.212[0.197, 0.228]<1.0x10-300
OthersGenotype-only modelR20.079[0.068, 0.090]3.8x10-142
OthersFull model (covariates and genotypes)R20.282[0.265, 0.299]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23107/INI23107.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 38218 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
24171672:417167:T:Crs62106258COthersAC105393.22.360
109603959710:96039597:G:Crs2274224CPAVsPLCE1-1.871
165380095416:53800954:T:Crs1421085CIntronicFTO-1.639
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-1.439
5828151705:82815170:A:Grs61749613GPAVsVCAN-1.356
51273505495:127350549:C:Trs3749748TIntronicCTC-228N24.3-1.301
11549913891:154991389:T:Crs905938CIntronicDCST2-1.094
51765202435:176520243:G:Ars351855APAVsFGFR4-1.053
162495088016:24950880:C:Trs78457529TPAVsARHGAP171.046
158941524715:89415247:C:Grs3817428GPAVsACAN-1.043
11778894801:177889480:A:Grs543874GOthersSEC16B-0.998
166751694516:67516945:C:Trs5030980TPAVsAGRP-0.959
81205960238:120596023:A:Grs10283100GPAVsENPP2-0.930
161994436316:19944363:A:Grs11639988GOthers0.909
158458212415:84582124:G:Trs4842838TPAVsADAMTSL30.826
125764864412:57648644:C:Trs78607331TPAVsR3HDM2-0.815
156231603515:62316035:C:Trs12595158TPAVsVPS13C0.810
112767991611:27679916:C:Trs6265TPAVsBDNF0.806
450168834:5016883:G:Ars11722554APAVsCYTL1-0.802
194756900319:47569003:G:Ars3810291AUTRZC3H4-0.786
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.782
21724129072:172412907:A:Crs3821083CUTRCYBRD10.778
X68381264X:68381264:C:Ars11539157APAVsPJA10.764
41551604244:155160424:A:ACrs546143621ACPTVsDCHS20.742
109609837310:96098373:C:Trs17517578TPAVsNOC3L0.690
149311112014:93111120:C:Trs11624512TOthersRIN3-0.681
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.660
195036358519:50363585:CAG:Crs200876443CUTRPTOV1-0.648
185803927618:58039276:C:Trs2229616TPAVsMC4R0.648
185785109718:57851097:T:Crs17782313COthers-0.647
6508030506:50803050:A:Grs987237GIntronicTFAP2B-0.626
1510051461415:100514614:T:Crs2573652CPAVsADAMTS170.622
9982483289:98248328:A:Grs2282040GIntronicPTCH1-0.620
31858315833:185831583:T:Grs61587156GIntronicDGKG0.616
112707931011:27079310:C:Ars7119888AIntronicRP11-1L12.3, BBOX10.600
4735158254:73515825:C:Trs16848425TOthers0.599
156751634115:67516341:T:Crs9806590CIntronicAAGAB-0.598
12336809312:3368093:G:Ars10491967AIntronicTSPAN9-0.594
1108332321:10833232:C:Grs58064215GIntronicCASZ10.594
6862572296:86257229:T:Grs41271629GPAVsSNX140.588
X117904229X:117904229:T:Crs2248846CPTVsIL13RA1-0.587
3123931253:12393125:C:Grs1801282GPAVsPPARG0.582
9168819149:16881914:G:Ars7868212AOthers0.579
51227337035:122733703:T:Crs10900767CIntronicCEP1200.567
124839692012:48396920:G:Trs12228854TIntronicCOL2A10.564
26228272:622827:T:Crs2867125COthers-0.561
125714606912:57146069:T:Grs2277339GPAVsPRIM10.558
41031887094:103188709:C:Trs13107325TPAVsSLC39A8-0.556
203983262820:39832628:T:Crs17265513CPAVsZHX30.550
3505970923:50597092:G:Ars1034405APAVsC3orf18-0.535
5958565015:95856501:T:Crs2611742CIntronicCTD-2337A12.1-0.534
11982544711:9825447:C:Trs6483726TIntronicSBF2-AS1, SBF2-0.534
132704593913:27045939:G:Ars12864131AOthers-0.526
4890523234:89052323:G:Trs2231142TPAVsABCG20.523
12334032112:3340321:C:Trs11062585TIntronicTSPAN9-0.523
2334171102:33417110:T:Crs4670928CIntronicLTBP10.520
137845523013:78455230:T:Crs1360371COthers-0.520
4254088384:25408838:G:Ars34811474APAVsANAPC40.519
X67652748X:67652748:C:Trs41303733TPAVsOPHN10.514
71505545537:150554553:C:Trs1049742TPAVsAOC10.513
1010471909610:104719096:G:Ars12413409AIntronicCNNM2-0.512
5558073705:55807370:C:Trs464605TOthersAC022431.2-0.510
203397191420:33971914:C:Trs4911494TPAVsUQCC10.505
4543394784:54339478:T:Crs12505040CIntronicFIP1L1, LNX10.503
142593098814:25930988:C:Ars8015400AOthers-0.503
41060846434:106084643:G:Ars6825684AIntronicTET2-0.498
51307666625:130766662:T:Crs1291602CPAVsRAPGEF6, CTC-432M15.3-0.497
31289711133:128971113:T:Crs4927953CPAVsCOPG1-0.494
6347644436:34764443:A:Grs6457792GIntronicUHRF1BP1-0.493
2406914682:40691468:C:Ars11679585AIntronicSLC8A1-0.491
1786236261:78623626:C:Trs17391694TOthers-0.484
109575650010:95756500:A:Grs1223583GIntronicPLCE10.483
8368471158:36847115:T:Crs10110651COthersAC090453.1-0.481
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.479
4735152424:73515242:A:Grs16845048GOthers0.474
11499064131:149906413:T:Crs11205303CPAVsMTMR110.471
2434605142:43460514:C:Ars1549723AOthersAC010883.50.471
3135854683:13585468:G:Ars4684947AIntronicFBLN2-0.467
12010162961:201016296:G:Ars3850625APAVsCACNA1S0.467
51377735255:137773525:C:Trs12659034TOthersREEP2-0.466
41151347684:115134768:T:Crs13128386COthers0.465
11510158681:151015868:G:Ars12068365APAVsBNIPL0.460
154223531615:42235316:C:Trs11549015TPAVsEHD40.459
413415534:1341553:A:Grs111391498GPAVsUVSSA0.456
9284143399:28414339:A:Grs10968576GIntronicLINGO2-0.453
7730120427:73012042:G:Ars35332062APAVsMLXIPL-0.452
3116404813:11640481:A:Grs17776719GIntronicVGLL4-0.451
7309617907:30961790:G:Ars28362731APAVsAQP10.449
166962276216:69622762:G:Ars244418AIntronicNFAT50.448
17211910117:2119101:C:Trs11655813TIntronicSMG6, AC130689.5-0.448
5327686345:32768634:A:Grs3792752GIntronicNPR30.444
142154276614:21542766:A:Grs12889267GPAVsARHGEF400.444
212830521221:28305212:C:Trs2830585TPAVsADAMTS5-0.443
146097653714:60976537:C:Ars33912345APAVsSIX60.443
1931609021:93160902:T:Crs2391199CPAVsEVI50.440
71502173097:150217309:C:Trs3735080TPAVsGIMAP70.439
168881306016:88813060:C:Trs78579285TIntronicPIEZO10.438
26325502:632550:C:Trs13012571TOthers-0.436
31195341533:119534153:C:Trs2276707TPAVsNR1I20.435
4451798834:45179883:C:Trs12641981TOthers-0.432

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 38218 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References