Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Impedance of leg (left)


Impd. of leg L iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23108/INI23108.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23108/INI23108.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23108/INI23108.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23108/INI23108.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23108/INI23108.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.181[0.176, 0.186]<1.0x10-300
white BritishGenotype-only modelR20.111[0.107, 0.116]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.291[0.286, 0.297]<1.0x10-300
Non-British whiteCovariate-only modelR20.182[0.156, 0.207]1.4x10-125
Non-British whiteGenotype-only modelR20.102[0.081, 0.123]1.8x10-68
Non-British whiteFull model (covariates and genotypes)R20.286[0.259, 0.314]6.3x10-210
South AsianCovariate-only modelR20.117[0.086, 0.147]4.2x10-41
South AsianGenotype-only modelR20.085[0.058, 0.112]4.7x10-30
South AsianFull model (covariates and genotypes)R20.200[0.163, 0.236]2.7x10-72
AfricanCovariate-only modelR20.050[0.026, 0.074]1.0x10-14
AfricanGenotype-only modelR20.022[0.005, 0.038]4.7x10-07
AfricanFull model (covariates and genotypes)R20.072[0.044, 0.100]1.1x10-20
OthersCovariate-only modelR20.204[0.188, 0.220]<1.0x10-300
OthersGenotype-only modelR20.083[0.071, 0.094]5.9x10-149
OthersFull model (covariates and genotypes)R20.278[0.262, 0.295]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23108/INI23108.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 36063 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
24171672:417167:T:Crs62106258COthersAC105393.22.389
109603959710:96039597:G:Crs2274224CPAVsPLCE1-1.981
165380095416:53800954:T:Crs1421085CIntronicFTO-1.640
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-1.425
5828151705:82815170:A:Grs61749613GPAVsVCAN-1.341
51273505495:127350549:C:Trs3749748TIntronicCTC-228N24.3-1.302
11549913891:154991389:T:Crs905938CIntronicDCST2-1.101
11778894801:177889480:A:Grs543874GOthersSEC16B-1.031
51765202435:176520243:G:Ars351855APAVsFGFR4-0.998
158941524715:89415247:C:Grs3817428GPAVsACAN-0.970
161994436316:19944363:A:Grs11639988GOthers0.941
185803927618:58039276:C:Trs2229616TPAVsMC4R0.937
158458212415:84582124:G:Trs4842838TPAVsADAMTSL30.908
166751694516:67516945:C:Trs5030980TPAVsAGRP-0.895
81205960238:120596023:A:Grs10283100GPAVsENPP2-0.867
112767991611:27679916:C:Trs6265TPAVsBDNF0.864
9982483289:98248328:A:Grs2282040GIntronicPTCH1-0.804
21724129072:172412907:A:Crs3821083CUTRCYBRD10.798
194756900319:47569003:G:Ars3810291AUTRZC3H4-0.788
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.778
162495088016:24950880:C:Trs78457529TPAVsARHGAP170.775
125764864412:57648644:C:Trs78607331TPAVsR3HDM2-0.739
109609837310:96098373:C:Trs17517578TPAVsNOC3L0.716
3123931253:12393125:C:Grs1801282GPAVsPPARG0.713
149311112014:93111120:C:Trs11624512TOthersRIN3-0.695
41551604244:155160424:A:ACrs546143621ACPTVsDCHS20.693
1108332321:10833232:C:Grs58064215GIntronicCASZ10.692
X68381264X:68381264:C:Ars11539157APAVsPJA10.692
9168819149:16881914:G:Ars7868212AOthers0.669
6862572296:86257229:T:Grs41271629GPAVsSNX140.650
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.637
12333999612:3339996:G:Ars3782809AIntronicTSPAN9-0.634
185785109718:57851097:T:Crs17782313COthers-0.634
112707931011:27079310:C:Ars7119888AIntronicRP11-1L12.3, BBOX10.633
125714606912:57146069:T:Grs2277339GPAVsPRIM10.627
6508030506:50803050:A:Grs987237GIntronicTFAP2B-0.626
4735152424:73515242:A:Grs16845048GOthers0.623
X117904229X:117904229:T:Crs2248846CPTVsIL13RA1-0.621
26325502:632550:C:Trs13012571TOthers-0.606
195036358519:50363585:CAG:Crs200876443CUTRPTOV1-0.598
4254088384:25408838:G:Ars34811474APAVsANAPC40.569
12336809312:3368093:G:Ars10491967AIntronicTSPAN9-0.564
2434605142:43460514:C:Ars1549723AOthersAC010883.50.563
X67652748X:67652748:C:Trs41303733TPAVsOPHN10.557
203983262820:39832628:T:Crs17265513CPAVsZHX30.548
1510051461415:100514614:T:Crs2573652CPAVsADAMTS170.548
156231603515:62316035:C:Trs12595158TPAVsVPS13C0.546
1010471909610:104719096:G:Ars12413409AIntronicCNNM2-0.541
41031887094:103188709:C:Trs13107325TPAVsSLC39A8-0.538
71505545537:150554553:C:Trs1049742TPAVsAOC10.536
20662337420:6623374:T:Crs979012COthers-0.532
11982544711:9825447:C:Trs6483726TIntronicSBF2-AS1, SBF2-0.525
6347644436:34764443:A:Grs6457792GIntronicUHRF1BP1-0.525
174740280717:47402807:C:Trs12940887TIntronicZNF652-0.521
8368471158:36847115:T:Crs10110651COthersAC090453.1-0.517
1212101406712:121014067:G:Ars16950287AIntronicRNF100.511
2334171102:33417110:T:Crs4670928CIntronicLTBP10.509
21122538512:112253851:T:Crs1345203CIntronicAC017002.1-0.509
7701797147:70179714:T:Crs12698917CIntronicAUTS2-0.506
109606634110:96066341:A:Grs2274223GPAVsPLCE10.499
132704593913:27045939:G:Ars12864131AOthers-0.498
1212482646212:124826462:C:Trs2229840TPAVsNCOR2-0.495
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.489
153129471415:31294714:C:Ars3784589APTVsTRPM1-0.488
4735158254:73515825:C:Trs16848425TOthers0.482
1931609021:93160902:T:Crs2391199CPAVsEVI50.482
142154276614:21542766:A:Grs12889267GPAVsARHGEF400.481
203397191420:33971914:C:Trs4911494TPAVsUQCC10.476
51227337035:122733703:T:Crs10900767CIntronicCEP1200.473
31289711133:128971113:T:Crs4927953CPAVsCOPG1-0.472
3505970923:50597092:G:Ars1034405APAVsC3orf18-0.470
9346335299:34633529:C:Trs11791806TOthersGALT0.469
212830521221:28305212:C:Trs2830585TPAVsADAMTS5-0.469
137845523013:78455230:T:Crs1360371COthers-0.466
12010162961:201016296:G:Ars3850625APAVsCACNA1S0.466
165161056116:51610561:G:Ars16950037AOthers-0.466
712745827:1274582:G:Ars4724799AIntronicUNCX-0.463
4890523234:89052323:G:Trs2231142TPAVsABCG20.462
41151347684:115134768:T:Crs13128386COthers0.461
17211910117:2119101:C:Trs11655813TIntronicSMG6, AC130689.5-0.460
1786236261:78623626:C:Trs17391694TOthers-0.459
124839692012:48396920:G:Trs12228854TIntronicCOL2A10.459
4451798834:45179883:C:Trs12641981TOthers-0.452
146097653714:60976537:C:Ars33912345APAVsSIX60.451
1397999121:39799912:C:Trs75770915TPAVsMACF10.451
450168834:5016883:G:Ars11722554APAVsCYTL1-0.451
5645880015:64588001:G:Ars7705742AIntronicADAMTS60.450
116948209111:69482091:C:Ars1789166AUTRORAOV1-0.449
173998382017:39983820:G:Ars1046403APAVsNT5C3B0.449
5958565015:95856501:T:Crs2611742CIntronicCTD-2337A12.1-0.443
20351592420:3515924:G:Ars151518APCVsATRN0.440
116837418311:68374183:T:Crs7107622CIntronicPPP6R30.440
166962276216:69622762:G:Ars244418AIntronicNFAT50.439
71502173097:150217309:C:Trs3735080TPAVsGIMAP70.437
168881306016:88813060:C:Trs78579285TIntronicPIEZO10.436
91294200259:129420025:C:Trs16929203TIntronicLMX1B-0.433
222198289222:21982892:C:Trs2298428TPAVsYDJC-0.433
155572288215:55722882:C:Ars57809907APTVsDYX1C10.432
109575650010:95756500:A:Grs1223583GIntronicPLCE10.431
5558073705:55807370:C:Trs464605TOthersAC022431.2-0.430

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 36063 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References