Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Impedance of arm (right)


Impd. of arm R iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23109/INI23109.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23109/INI23109.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23109/INI23109.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23109/INI23109.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23109/INI23109.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.522[0.517, 0.527]<1.0x10-300
white BritishGenotype-only modelR20.056[0.053, 0.059]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.577[0.572, 0.582]<1.0x10-300
Non-British whiteCovariate-only modelR20.531[0.506, 0.556]<1.0x10-300
Non-British whiteGenotype-only modelR20.058[0.042, 0.075]6.2x10-39
Non-British whiteFull model (covariates and genotypes)R20.586[0.563, 0.609]<1.0x10-300
South AsianCovariate-only modelR20.480[0.444, 0.517]7.5x10-209
South AsianGenotype-only modelR20.038[0.019, 0.057]7.0x10-14
South AsianFull model (covariates and genotypes)R20.522[0.487, 0.557]2.4x10-235
AfricanCovariate-only modelR20.352[0.308, 0.395]1.3x10-111
AfricanGenotype-only modelR20.022[0.006, 0.038]3.9x10-07
AfricanFull model (covariates and genotypes)R20.369[0.326, 0.412]2.1x10-118
OthersCovariate-only modelR20.535[0.520, 0.550]<1.0x10-300
OthersGenotype-only modelR20.044[0.035, 0.053]3.0x10-78
OthersFull model (covariates and genotypes)R20.576[0.562, 0.590]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23109/INI23109.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 35455 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
11551750891:155175089:C:Trs72704117TPAVsTHBS3-2.583
5828151705:82815170:A:Grs61749613GPAVsVCAN-2.242
109603959710:96039597:G:Crs2274224CPAVsPLCE1-1.784
162495088016:24950880:C:Trs78457529TPAVsARHGAP171.734
11499064131:149906413:T:Crs11205303CPAVsMTMR111.675
145092324914:50923249:C:Trs12881869TPAVsMAP4K51.476
12010162961:201016296:G:Ars3850625APAVsCACNA1S1.436
4735152424:73515242:A:Grs16845048GOthers1.326
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-1.268
165380095416:53800954:T:Crs1421085CIntronicFTO-1.264
5558073705:55807370:C:Trs464605TOthersAC022431.2-1.221
24171672:417167:T:Crs62106258COthersAC105393.21.217
158941524715:89415247:C:Grs3817428GPAVsACAN-1.166
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.991
185785109718:57851097:T:Crs17782313COthers-0.957
112767991611:27679916:C:Trs6265TPAVsBDNF0.939
4735153134:73515313:T:Crs7697556COthers-0.920
450168834:5016883:G:Ars11722554APAVsCYTL1-0.887
7730120427:73012042:G:Ars35332062APAVsMLXIPL-0.855
3123931253:12393125:C:Grs1801282GPAVsPPARG0.853
2693047192:69304719:T:Crs7424907CIntronicANTXR1-0.831
22203555292:220355529:A:Grs12464085GPAVsSPEG0.801
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.795
6308801566:30880156:G:Ars3218820APAVsGTF2H4-0.786
158458212415:84582124:G:Trs4842838TPAVsADAMTSL30.781
5558618945:55861894:G:Ars9687846AIntronicAC022431.2-0.764
51765202435:176520243:G:Ars351855APAVsFGFR4-0.746
X68381264X:68381264:C:Ars11539157APAVsPJA10.745
X67652748X:67652748:C:Trs41303733TPAVsOPHN10.744
194756900319:47569003:G:Ars3810291AUTRZC3H4-0.734
176505230417:65052304:G:Ars1799938APAVsCACNG1-0.707
51785550975:178555097:C:Trs35445112TPAVsADAMTS2-0.697
11778894801:177889480:A:Grs543874GOthersSEC16B-0.690
11132554561:113255456:C:Ars34611728APAVsPPM1J-0.690
11499023421:149902342:C:Trs145659444TPAVsMTMR110.688
4543394784:54339478:T:Crs12505040CIntronicFIP1L1, LNX10.673
11601608011:160160801:T:Crs150330307CPAVsCASQ10.666
4254088384:25408838:G:Ars34811474APAVsANAPC40.657
11767940661:176794066:G:Ars1325596AIntronicPAPPA2-0.648
91361492299:136149229:T:Crs505922CIntronicABO0.644
51276686855:127668685:G:Trs78727187TPAVsFBN20.641
185790529518:57905295:C:Trs9966504TOthers0.640
142331259414:23312594:G:Ars1042704APAVsMMP140.638
3499249403:49924940:T:Crs1062633CPAVsMST1R-0.629
185803927618:58039276:C:Trs2229616TPAVsMC4R0.628
9944863219:94486321:C:Trs10761129TPAVsROR2-0.627
22115405072:211540507:C:Ars1047891APAVsCPS1-0.626
1104242521:10424252:C:Trs11121548TIntronicKIF1B0.625
61089948266:108994826:G:Ars9398172AIntronicFOXO3-0.622
222078029622:20780296:G:Ars9680797APAVsSCARF20.609
11549913891:154991389:T:Crs905938CIntronicDCST2-0.605
51417903255:141790325:A:Grs10477176GIntronicAC005592.20.605
124675913612:46759136:T:Crs7968283CIntronicSLC38A2-0.604
124839692012:48396920:G:Trs12228854TIntronicCOL2A10.588
5645614455:64561445:C:Trs10940024TIntronicADAMTS60.584
156761206215:67612062:A:Grs9806377GIntronicIQCH-0.583
6320102726:32010272:T:Ars17421133APAVsTNXB0.581
1398788151:39878815:A:Grs1746842GPAVsKIAA07540.567
9785151959:78515195:A:Grs35650604GIntronicPCSK5-0.567
149150311814:91503118:T:Crs7156252CIntronicRPS6KA5-0.563
81226602488:122660248:G:Ars10089677AOthersHAS2-AS1-0.559
223860123122:38601231:G:Trs2267375TIntronicPLA2G6, MAFF-0.556
31339413203:133941320:C:Trs1131262TPAVsRYK-0.553
6862572296:86257229:T:Grs41271629GPAVsSNX140.549
1010207547910:102075479:G:Ars603424AIntronicPKD2L1-0.548
202112054320:21120543:C:Trs4815021TIntronicPLK1S10.544
1212442730612:124427306:T:Ars11057401APAVsCCDC920.544
174228743317:42287433:C:Trs77996120TIntronicCTB-175E5.7, UBTF-0.543
411642774:1164277:C:Grs2279279GPAVsSPON2-0.539
51377705575:137770557:A:Grs7734755GIntronicKDM3B-0.539
8368471158:36847115:T:Crs10110651COthersAC090453.1-0.538
176510474317:65104743:G:Ars11653020APAVsHELZ-0.537
12334032112:3340321:C:Trs11062585TIntronicTSPAN9-0.535
201062250120:10622501:G:Crs35761929CPAVsJAG1-0.535
19797063519:7970635:A:Grs4804833GIntronicMAP2K70.532
41456590644:145659064:T:Crs11727676CPCVsHHIP0.531
21724129072:172412907:A:Crs3821083CUTRCYBRD10.530
7841962587:84196258:T:Crs11766890CIntronicAC003984.10.530
194618139219:46181392:G:Crs1800437CPAVsGIPR0.529
31839761033:183976103:C:Trs11546878TPAVsECE20.528
157423143915:74231439:C:Trs12440667TIntronicLOXL1-0.528
6508030506:50803050:A:Grs987237GIntronicTFAP2B-0.523
193394671:9339467:C:Trs9442580TOthersZ98044.10.520
117487341:1748734:T:Crs2180311CIntronicGNB1-0.516
2560968922:56096892:A:Grs3791679GIntronicEFEMP1-0.515
159527137815:95271378:C:Ars11633626AOthers0.515
1010001745310:100017453:T:Grs1983864GPAVsLOXL40.513
5562071235:56207123:T:Ars2257505APAVsSETD90.512
1113027323011:130273230:A:Trs11222084TOthersADAMTS8-0.512
102178363410:21783634:G:Ars12770228AUTRCASC10-0.499
195038363619:50383636:T:Crs3745486CPAVsTBC1D170.498
22270738542:227073854:C:Trs1515098TOthers-0.498
125714606912:57146069:T:Grs2277339GPAVsPRIM10.497
107721517610:77215176:A:Grs7096727GOthers0.494
124814331512:48143315:A:Grs145878042GPAVsRAPGEF3-0.489
142593098814:25930988:C:Ars8015400AOthers-0.489
168998611716:89986117:C:Trs1805007TPAVsMC1R, TUBB3-0.487
31858223533:185822353:T:Grs10513801GIntronicETV50.485
1980268011:98026801:A:Grs2811219GIntronicDPYD-0.481
8744994358:74499435:T:Crs13277065CIntronicSTAU20.477

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 35455 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References