Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Impedance of arm (left)


Impd. of arm L iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23110/INI23110.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23110/INI23110.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23110/INI23110.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23110/INI23110.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23110/INI23110.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.529[0.523, 0.534]<1.0x10-300
white BritishGenotype-only modelR20.059[0.056, 0.063]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.587[0.582, 0.591]<1.0x10-300
Non-British whiteCovariate-only modelR20.528[0.503, 0.553]<1.0x10-300
Non-British whiteGenotype-only modelR20.058[0.042, 0.075]5.3x10-39
Non-British whiteFull model (covariates and genotypes)R20.582[0.559, 0.605]<1.0x10-300
South AsianCovariate-only modelR20.474[0.437, 0.510]1.1x10-204
South AsianGenotype-only modelR20.049[0.027, 0.070]1.7x10-17
South AsianFull model (covariates and genotypes)R20.521[0.486, 0.556]1.3x10-234
AfricanCovariate-only modelR20.373[0.330, 0.416]2.5x10-120
AfricanGenotype-only modelR20.021[0.005, 0.037]7.1x10-07
AfricanFull model (covariates and genotypes)R20.390[0.347, 0.433]3.7x10-127
OthersCovariate-only modelR20.533[0.518, 0.548]<1.0x10-300
OthersGenotype-only modelR20.043[0.034, 0.051]3.7x10-76
OthersFull model (covariates and genotypes)R20.575[0.561, 0.589]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23110/INI23110.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 36052 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
11551750891:155175089:C:Trs72704117TPAVsTHBS3-2.486
5828151705:82815170:A:Grs61749613GPAVsVCAN-2.258
109603959710:96039597:G:Crs2274224CPAVsPLCE1-1.840
11499064131:149906413:T:Crs11205303CPAVsMTMR111.729
165380095416:53800954:T:Crs1421085CIntronicFTO-1.507
24171672:417167:T:Crs62106258COthersAC105393.21.435
12010162961:201016296:G:Ars3850625APAVsCACNA1S1.422
162495088016:24950880:C:Trs78457529TPAVsARHGAP171.341
5558073705:55807370:C:Trs464605TOthersAC022431.2-1.336
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-1.303
4735152424:73515242:A:Grs16845048GOthers1.297
145092324914:50923249:C:Trs12881869TPAVsMAP4K51.265
158941524715:89415247:C:Grs3817428GPAVsACAN-1.217
4735153134:73515313:T:Crs7697556COthers-1.056
112767991611:27679916:C:Trs6265TPAVsBDNF1.035
185803927618:58039276:C:Trs2229616TPAVsMC4R1.021
185785109718:57851097:T:Crs17782313COthers-0.969
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.897
2693047192:69304719:T:Crs7424907CIntronicANTXR1-0.872
11601608011:160160801:T:Crs150330307CPAVsCASQ10.868
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.839
X67652748X:67652748:C:Trs41303733TPAVsOPHN10.838
22203555292:220355529:A:Grs12464085GPAVsSPEG0.815
X68381264X:68381264:C:Ars11539157APAVsPJA10.813
11132554561:113255456:C:Ars34611728APAVsPPM1J-0.775
7730120427:73012042:G:Ars35332062APAVsMLXIPL-0.762
4543394784:54339478:T:Crs12505040CIntronicFIP1L1, LNX10.762
109606634110:96066341:A:Grs2274223GPAVsPLCE10.752
4254088384:25408838:G:Ars34811474APAVsANAPC40.742
185790529518:57905295:C:Trs9966504TOthers0.739
5558618945:55861894:G:Ars9687846AIntronicAC022431.2-0.738
194756900319:47569003:G:Ars3810291AUTRZC3H4-0.736
9785151959:78515195:A:Grs35650604GIntronicPCSK5-0.720
142331259414:23312594:G:Ars1042704APAVsMMP140.719
176505230417:65052304:G:Ars1799938APAVsCACNG1-0.717
124814331512:48143315:A:Grs145878042GPAVsRAPGEF3-0.712
156761106615:67611066:G:Trs17526859TIntronicIQCH-0.707
61089948266:108994826:G:Ars9398172AIntronicFOXO3-0.692
22115405072:211540507:C:Ars1047891APAVsCPS1-0.691
11767940661:176794066:G:Ars1325596AIntronicPAPPA2-0.667
11778894801:177889480:A:Grs543874GOthersSEC16B-0.643
222078029622:20780296:G:Ars9680797APAVsSCARF20.640
51765202435:176520243:G:Ars351855APAVsFGFR4-0.635
450168834:5016883:G:Ars11722554APAVsCYTL1-0.630
5645614455:64561445:C:Trs10940024TIntronicADAMTS60.625
2560400992:56040099:T:Crs10199082COthers0.624
124675913612:46759136:T:Crs7968283CIntronicSLC38A2-0.611
9944863219:94486321:C:Trs10761129TPAVsROR2-0.610
5562071235:56207123:T:Ars2257505APAVsSETD90.604
125714606912:57146069:T:Grs2277339GPAVsPRIM10.604
114730663011:47306630:C:Trs35233100TPTVsMADD-0.595
176199517017:61995170:C:Trs5388TPAVsGH1-0.593
41456590644:145659064:T:Crs11727676CPCVsHHIP0.592
8368471158:36847115:T:Crs10110651COthersAC090453.1-0.592
7841962587:84196258:T:Crs11766890CIntronicAC003984.10.591
31339413203:133941320:C:Trs1131262TPAVsRYK-0.584
201062250120:10622501:G:Crs35761929CPAVsJAG1-0.576
158458212415:84582124:G:Trs4842838TPAVsADAMTSL30.575
124839692012:48396920:G:Trs12228854TIntronicCOL2A10.573
159527137815:95271378:C:Ars11633626AOthers0.572
6508030506:50803050:A:Grs987237GIntronicTFAP2B-0.570
31858315833:185831583:T:Grs61587156GIntronicDGKG0.569
1510051461415:100514614:T:Crs2573652CPAVsADAMTS170.569
202112054320:21120543:C:Trs4815021TIntronicPLK1S10.569
18910420418:9104204:G:GCrs139009723GCPTVsNDUFV20.565
3491818853:49181885:A:Grs12493001GPAVsRP11-694I15.70.560
31839761033:183976103:C:Trs11546878TPAVsECE20.552
6862572296:86257229:T:Grs41271629GPAVsSNX140.550
11549913891:154991389:T:Crs905938CIntronicDCST2-0.546
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.542
12335027612:3350276:G:Ars3782800AIntronicTSPAN9-0.537
9982483289:98248328:A:Grs2282040GIntronicPTCH1-0.535
22053777052:205377705:A:Grs10804139GOthers0.535
1103089581:10308958:C:Trs4846204TIntronicKIF1B0.534
3385211563:38521156:T:Crs13097628CPAVsACVR2B-0.532
19797063519:7970635:A:Grs4804833GIntronicMAP2K70.531
2560968922:56096892:A:Grs3791679GIntronicEFEMP1-0.531
71376006907:137600690:C:Trs273957TPAVsCREB3L20.528
3123931253:12393125:C:Grs1801282GPAVsPPARG0.525
195038363619:50383636:T:Crs3745486CPAVsTBC1D170.524
3499249403:49924940:T:Crs1062633CPAVsMST1R-0.522
162453979316:24539793:C:Trs17767765TOthers0.522
1398788151:39878815:A:Grs1746842GPAVsKIAA07540.522
4832182304:83218230:T:Crs6822283COthers-0.518
157423143915:74231439:C:Trs12440667TIntronicLOXL1-0.518
12018692571:201869257:G:Ars2820312APAVsLMOD1-0.517
194618139219:46181392:G:Crs1800437CPAVsGIPR0.517
8989435988:98943598:C:Trs2290472TPAVsMATN2-0.515
71388171937:138817193:T:Crs11525873COthersTTC260.514
3503695463:50369546:C:Ars2073498APAVsRASSF10.514
81205960238:120596023:A:Grs10283100GPAVsENPP2-0.514
161994436316:19944363:A:Grs11639988GOthers0.513
1211876507012:118765070:C:Trs11068908TIntronicTAOK3-0.513
168998614416:89986144:C:Trs1805008TPAVsMC1R, TUBB3-0.510
8744994358:74499435:T:Crs13277065CIntronicSTAU20.509
6308801566:30880156:G:Ars3218820APAVsGTF2H4-0.508
1212442730612:124427306:T:Ars11057401APAVsCCDC920.507
19851294019:8512940:T:Grs17160491GIntronicHNRNPM-0.504
224176862522:41768625:C:Trs9611566TIntronicTEF0.501
411642774:1164277:C:Grs2279279GPAVsSPON2-0.497

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 36052 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References