Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Leg fat percentage (right)


Leg fat % R iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23111/INI23111.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23111/INI23111.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23111/INI23111.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23111/INI23111.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23111/INI23111.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.740[0.737, 0.744]<1.0x10-300
white BritishGenotype-only modelR20.025[0.022, 0.027]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.767[0.763, 0.770]<1.0x10-300
Non-British whiteCovariate-only modelR20.722[0.704, 0.739]<1.0x10-300
Non-British whiteGenotype-only modelR20.021[0.011, 0.032]6.7x10-15
Non-British whiteFull model (covariates and genotypes)R20.753[0.737, 0.768]<1.0x10-300
South AsianCovariate-only modelR20.789[0.770, 0.808]<1.0x10-300
South AsianGenotype-only modelR20.014[0.002, 0.026]5.8x10-06
South AsianFull model (covariates and genotypes)R20.800[0.782, 0.818]<1.0x10-300
AfricanCovariate-only modelR20.800[0.780, 0.820]<1.0x10-300
AfricanGenotype-only modelR20.006[-0.003, 0.014]8.6x10-03
AfricanFull model (covariates and genotypes)R20.795[0.774, 0.815]<1.0x10-300
OthersCovariate-only modelR20.728[0.718, 0.738]<1.0x10-300
OthersGenotype-only modelR20.021[0.015, 0.027]1.1x10-37
OthersFull model (covariates and genotypes)R20.746[0.736, 0.755]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23111/INI23111.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 32758 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.237
3123931253:12393125:C:Grs1801282GPAVsPPARG0.197
165380095416:53800954:T:Crs1421085CIntronicFTO0.185
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.168
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.148
109603959710:96039597:G:Crs2274224CPAVsPLCE1-0.143
51273575265:127357526:C:Trs17764730TOthersCTC-228N24.3-0.121
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.104
2251415382:25141538:A:Grs11676272GPAVsADCY30.103
41002393194:100239319:T:Crs1229984CPAVsADH1B0.102
11778894801:177889480:A:Grs543874GOthersSEC16B0.101
26141682:614168:A:Grs2947411GOthers0.101
24660032:466003:G:Ars62104180AOthers-0.099
142968532814:29685328:G:Ars974471AOthers0.097
112767991611:27679916:C:Trs6265TPAVsBDNF-0.094
51458953945:145895394:G:Ars114285050APTVsGPR151-0.093
4451798834:45179883:C:Trs12641981TOthers0.091
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.090
1728147831:72814783:A:Grs2815749GOthers0.087
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.087
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.086
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.085
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.084
149311112014:93111120:C:Trs11624512TOthersRIN3-0.083
107396424310:73964243:G:Crs11000217CPTVsASCC10.082
31413266023:141326602:T:Crs295322CPAVsRASA20.081
172807456317:28074563:T:Grs1038088GIntronicSSH20.081
114752994711:47529947:C:Ars7124681AIntronicCELF10.079
8734390708:73439070:A:Grs1431659GOthers-0.079
109609837310:96098373:C:Trs17517578TPAVsNOC3L0.078
154085698915:40856989:C:Trs3803354TPTVsC15orf57-0.078
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.078
5877300275:87730027:A:Grs7444298GOthersCTC-498M16.4-0.078
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.077
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.077
12336809312:3368093:G:Ars10491967AIntronicTSPAN9-0.076
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.076
3499361023:49936102:T:Crs2230590CPAVsMST1R0.075
133101290413:31012904:C:Trs1928496TOthers0.074
12435647221:243564722:G:Trs12029086TIntronicSDCCAG8-0.074
5879595385:87959538:T:Grs13174131GIntronicLINC004610.073
107875081010:78750810:C:Ars3824716AIntronicKCNMA10.073
194756900319:47569003:G:Ars3810291AUTRZC3H40.073
135069815313:50698153:A:Crs7981648CIntronicDLEU2, DLEU1-0.073
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.073
2244390482:24439048:A:Grs3731625GPAVsITSN2-0.073
125024746812:50247468:G:Ars7138803AOthers0.073
8308543798:30854379:T:Crs17648656CIntronicPURG-0.072
19224562219:2245622:G:Ars45521740AOthersSF3A20.072
7990817307:99081730:A:Grs6962772GPAVsZNF789-0.072
21008300402:100830040:T:Crs4303732CIntronicLINC01104-0.071
1111675982411:116759824:A:Grs12294191GIntronicSIK3-IT1, SIK30.071
114365653511:43656535:G:Ars2862961AIntronicHSD17B12-0.071
1210554617212:105546172:G:Ars1663564APAVsKIAA1033-0.071
6985762236:98576223:G:Ars12202969AIntronicRP11-436D23.1-0.071
6348246366:34824636:A:Grs11755393GPAVsUHRF1BP10.070
147494740414:74947404:C:Trs140130028TPTVsNPC20.070
31858223533:185822353:T:Grs10513801GIntronicETV5-0.070
109977240410:99772404:G:Ars563296AIntronicCRTAC10.069
6131780696:13178069:T:Crs12527257CIntronicPHACTR1-0.069
115463041:1546304:C:Trs11492279TOthersMIB2-0.068
4787768834:78776883:A:Grs6817305GOthers0.068
4652270494:65227049:T:Crs7678517CIntronicTECRL-0.067
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.067
1321654951:32165495:G:Trs2228552TPAVsCOL16A10.067
31143992963:114399296:G:Ars17681451AIntronicZBTB20-0.066
6974149496:97414949:C:Trs35143662TPAVsKLHL320.065
16401346716:4013467:C:Trs2531995TUTRADCY90.064
X67652748X:67652748:C:Trs41303733TPAVsOPHN10.064
51288033455:128803345:G:Ars6866231AIntronicADAMTS190.064
112770136511:27701365:G:Ars10835211AIntronicBDNF-AS, BDNF0.064
106183129010:61831290:T:Crs28932171CPAVsANK30.064
185783976918:57839769:C:Ars571312AOthers0.064
91341050489:134105048:A:Grs28665311GPTVsNUP214-0.063
2472835572:47283557:G:Ars2436772AIntronicC2orf61, TTC7A-0.063
1010243304610:102433046:C:Trs11190644TOthers0.063
12334032112:3340321:C:Trs11062585TIntronicTSPAN9-0.062
31731074433:173107443:T:Crs247975COthers0.062
203979206320:39792063:A:Grs2228246GPAVsPLCG10.062
6121205886:12120588:C:Trs2228209TPAVsHIVEP1-0.062
162479374116:24793741:C:Trs2343606TIntronicTNRC6A-0.062
167126456116:71264561:A:Grs3743953GPTVsHYDIN-0.061
6403637346:40363734:C:Trs930249TIntronicLRFN2-0.061
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.061
224887569922:48875699:C:Trs9615905TOthers0.061
12018692571:201869257:G:Ars2820312APAVsLMOD10.061
9167194459:16719445:C:Trs10962549TIntronicBNC20.061
3124269363:12426936:G:Trs10510419TIntronicPPARG-0.061
175429115117:54291151:A:Crs7209891CIntronicANKFN1-0.061
3517550653:51755065:T:Crs4687770COthersGRM2-0.060
129046025612:90460256:G:Ars7980592AOthers0.060
204636563620:46365636:C:Trs56218501TPAVsSULF2-0.060
203397191420:33971914:C:Trs4911494TPAVsUQCC10.060
49830604:983060:T:Crs3796622CPAVsSLC26A1-0.059
201581949520:15819495:A:Grs8123881GIntronicMACROD20.059
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.059
125442181012:54421810:T:Crs10876529CIntronicRP11-834C11.14, RP11-834C11.12, HOXC4, HOXC60.059
158941524715:89415247:C:Grs3817428GPAVsACAN-0.059
145090176814:50901768:G:Ars17780143APAVsMAP4K5-0.058
11551727251:155172725:T:Crs35154152CPAVsTHBS3-0.058

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 32758 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References