Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Leg fat percentage (left)


Leg fat % L iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23115/INI23115.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23115/INI23115.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23115/INI23115.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23115/INI23115.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23115/INI23115.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.763[0.760, 0.766]<1.0x10-300
white BritishGenotype-only modelR20.023[0.020, 0.025]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.787[0.784, 0.790]<1.0x10-300
Non-British whiteCovariate-only modelR20.746[0.730, 0.762]<1.0x10-300
Non-British whiteGenotype-only modelR20.018[0.009, 0.028]3.7x10-13
Non-British whiteFull model (covariates and genotypes)R20.774[0.760, 0.789]<1.0x10-300
South AsianCovariate-only modelR20.822[0.806, 0.838]<1.0x10-300
South AsianGenotype-only modelR20.017[0.004, 0.030]5.3x10-07
South AsianFull model (covariates and genotypes)R20.835[0.819, 0.850]<1.0x10-300
AfricanCovariate-only modelR20.814[0.795, 0.833]<1.0x10-300
AfricanGenotype-only modelR20.005[-0.003, 0.012]2.0x10-02
AfricanFull model (covariates and genotypes)R20.811[0.792, 0.830]<1.0x10-300
OthersCovariate-only modelR20.753[0.744, 0.762]<1.0x10-300
OthersGenotype-only modelR20.018[0.012, 0.024]1.2x10-32
OthersFull model (covariates and genotypes)R20.770[0.761, 0.779]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23115/INI23115.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 33293 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.210
165380095416:53800954:T:Crs1421085CIntronicFTO0.188
3123931253:12393125:C:Grs1801282GPAVsPPARG0.186
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.159
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.138
109603959710:96039597:G:Crs2274224CPAVsPLCE1-0.133
51458953945:145895394:G:Ars114285050APTVsGPR151-0.121
51273575265:127357526:C:Trs17764730TOthersCTC-228N24.3-0.116
2251415382:25141538:A:Grs11676272GPAVsADCY30.110
11778894801:177889480:A:Grs543874GOthersSEC16B0.103
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.101
1728147831:72814783:A:Grs2815749GOthers0.094
12333999612:3339996:G:Ars3782809AIntronicTSPAN9-0.093
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.089
4451798834:45179883:C:Trs12641981TOthers0.089
114752994711:47529947:C:Ars7124681AIntronicCELF10.087
112767991611:27679916:C:Trs6265TPAVsBDNF-0.087
26141682:614168:A:Grs2947411GOthers0.085
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.085
142968532814:29685328:G:Ars974471AOthers0.085
5877300275:87730027:A:Grs7444298GOthersCTC-498M16.4-0.085
154085698915:40856989:C:Trs3803354TPTVsC15orf57-0.084
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.082
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.082
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.080
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.080
1111675982411:116759824:A:Grs12294191GIntronicSIK3-IT1, SIK30.079
147994516214:79945162:A:Grs10146997GIntronicNRXN30.079
3499361023:49936102:T:Crs2230590CPAVsMST1R0.079
114365653511:43656535:G:Ars2862961AIntronicHSD17B12-0.078
8734390708:73439070:A:Grs1431659GOthers-0.078
31413266023:141326602:T:Crs295322CPAVsRASA20.077
109609837310:96098373:C:Trs17517578TPAVsNOC3L0.076
31858223533:185822353:T:Grs10513801GIntronicETV5-0.076
1210554617212:105546172:G:Ars1663564APAVsKIAA1033-0.075
24660032:466003:G:Ars62104180AOthers-0.075
41002393194:100239319:T:Crs1229984CPAVsADH1B0.074
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.074
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.071
125024746812:50247468:G:Ars7138803AOthers0.071
24171672:417167:T:Crs62106258COthersAC105393.2-0.070
145090176814:50901768:G:Ars17780143APAVsMAP4K5-0.070
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.070
31143992963:114399296:G:Ars17681451AIntronicZBTB20-0.070
7990817307:99081730:A:Grs6962772GPAVsZNF789-0.070
149311112014:93111120:C:Trs11624512TOthersRIN3-0.069
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.069
12336809312:3368093:G:Ars10491967AIntronicTSPAN9-0.068
185785258718:57852587:T:Crs476828COthers0.068
12435576591:243557659:T:Crs10927006CIntronicSDCCAG8-0.067
8308543798:30854379:T:Crs17648656CIntronicPURG-0.067
194756900319:47569003:G:Ars3810291AUTRZC3H40.066
115463041:1546304:C:Trs11492279TOthersMIB2-0.066
4787768834:78776883:A:Grs6817305GOthers0.066
5879595385:87959538:T:Grs13174131GIntronicLINC004610.066
2244390482:24439048:A:Grs3731625GPAVsITSN2-0.065
129046025612:90460256:G:Ars7980592AOthers0.065
1010243304610:102433046:C:Trs11190644TOthers0.065
16401346716:4013467:C:Trs2531995TUTRADCY90.064
172807456317:28074563:T:Grs1038088GIntronicSSH20.064
1321654951:32165495:G:Trs2228552TPAVsCOL16A10.064
109977240410:99772404:G:Ars563296AIntronicCRTAC10.063
1210843639612:108436396:T:Grs10861861GOthers-0.062
107875081010:78750810:C:Ars3824716AIntronicKCNMA10.061
22041545522:204154552:C:Trs1048013TPAVsCYP20A10.061
203979206320:39792063:A:Grs2228246GPAVsPLCG10.061
167126456116:71264561:A:Grs3743953GPTVsHYDIN-0.061
X67652748X:67652748:C:Trs41303733TPAVsOPHN10.060
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.060
213263855021:32638550:C:Trs2070418TPAVsTIAM1-0.060
112770136511:27701365:G:Ars10835211AIntronicBDNF-AS, BDNF0.059
6985762236:98576223:G:Ars12202969AIntronicRP11-436D23.1-0.059
107551969110:75519691:C:Ars35972789AIntronicSEC24C-0.059
6509050676:50905067:C:Trs3857596TOthers0.059
176583874317:65838743:T:Grs8074078GIntronicBPTF0.059
162479374116:24793741:C:Trs2343606TIntronicTNRC6A-0.058
9167194459:16719445:C:Trs10962549TIntronicBNC20.058
6348246366:34824636:A:Grs11755393GPAVsUHRF1BP10.058
2472835572:47283557:G:Ars2436772AIntronicC2orf61, TTC7A-0.058
8772282228:77228222:A:Grs1405348GOthers0.057
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.057
156799258315:67992583:A:Grs4363822GIntronicMAP2K50.057
133101290413:31012904:C:Trs1928496TOthers0.057
3124269363:12426936:G:Trs10510419TIntronicPPARG-0.057
224887569922:48875699:C:Trs9615905TOthers0.057
175429115117:54291151:A:Crs7209891CIntronicANKFN1-0.057
1012884401110:128844011:G:Trs2066160TIntronicDOCK1-0.056
1332313801:33231380:T:Grs6694085GPAVsKIAA1522-0.056
3517550653:51755065:T:Crs4687770COthersGRM2-0.056
71505246817:150524681:T:Crs10952289CIntronicAOC1-0.056
201581949520:15819495:A:Grs8123881GIntronicMACROD20.056
11551727251:155172725:T:Crs35154152CPAVsTHBS3-0.056
185502733318:55027333:CG:Crs112792874CPTVsST8SIA3-0.056
185783976918:57839769:C:Ars571312AOthers0.056
107890796710:78907967:C:Trs1903894TIntronicRP11-180I22.2, KCNMA1-0.055
51288033455:128803345:G:Ars6866231AIntronicADAMTS190.055
6403637346:40363734:C:Trs930249TIntronicLRFN2-0.055
3101845193:10184519:T:Crs73024533COthersVHL0.055
4178849864:17884986:T:Crs16895971CUTRLCORL0.055
91191068819:119106881:C:Ars7020782APAVsPAPPA-0.054

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 33293 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References