Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Leg fat mass (left)


Leg fat mass L iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23116/INI23116.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23116/INI23116.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23116/INI23116.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23116/INI23116.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23116/INI23116.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.334[0.328, 0.339]<1.0x10-300
white BritishGenotype-only modelR20.063[0.060, 0.067]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.397[0.392, 0.403]<1.0x10-300
Non-British whiteCovariate-only modelR20.304[0.276, 0.332]7.3x10-225
Non-British whiteGenotype-only modelR20.058[0.041, 0.074]1.3x10-38
Non-British whiteFull model (covariates and genotypes)R20.372[0.345, 0.400]5.6x10-289
South AsianCovariate-only modelR20.456[0.418, 0.493]4.0x10-194
South AsianGenotype-only modelR20.054[0.031, 0.076]3.1x10-19
South AsianFull model (covariates and genotypes)R20.493[0.456, 0.529]2.8x10-216
AfricanCovariate-only modelR20.451[0.409, 0.492]1.3x10-153
AfricanGenotype-only modelR20.008[-0.002, 0.018]2.5x10-03
AfricanFull model (covariates and genotypes)R20.428[0.386, 0.470]1.7x10-143
OthersCovariate-only modelR20.334[0.317, 0.351]<1.0x10-300
OthersGenotype-only modelR20.062[0.052, 0.072]3.9x10-111
OthersFull model (covariates and genotypes)R20.382[0.365, 0.399]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23116/INI23116.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 30794 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
165380095416:53800954:T:Crs1421085CIntronicFTO0.085
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.074
24171672:417167:T:Crs62106258COthersAC105393.2-0.053
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.049
11778894801:177889480:A:Grs543874GOthersSEC16B0.047
3123931253:12393125:C:Grs1801282GPAVsPPARG0.038
112767991611:27679916:C:Trs6265TPAVsBDNF-0.036
4451798834:45179883:C:Trs12641981TOthers0.032
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.030
194756900319:47569003:G:Ars3810291AUTRZC3H40.029
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.029
185783976918:57839769:C:Ars571312AOthers0.028
147994264714:79942647:G:Ars7156625AIntronicNRXN30.027
2251415382:25141538:A:Grs11676272GPAVsADCY30.027
185785258718:57852587:T:Crs476828COthers0.026
107396424310:73964243:G:Crs11000217CPTVsASCC10.026
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.026
31413266023:141326602:T:Crs295322CPAVsRASA20.026
142968532814:29685328:G:Ars974471AOthers0.025
8734390708:73439070:A:Grs1431659GOthers-0.025
51458953945:145895394:G:Ars114285050APTVsGPR151-0.025
24660032:466003:G:Ars62104180AOthers-0.024
125024746812:50247468:G:Ars7138803AOthers0.024
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.024
3499249403:49924940:T:Crs1062633CPAVsMST1R0.024
5877300275:87730027:A:Grs7444298GOthersCTC-498M16.4-0.024
176583874317:65838743:T:Grs8074078GIntronicBPTF0.024
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.023
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.023
6403719186:40371918:C:Trs1579557TIntronicLRFN20.023
16401346716:4013467:C:Trs2531995TUTRADCY90.023
31858223533:185822353:T:Grs10513801GIntronicETV5-0.022
1212308744212:123087442:A:Grs7307735GPAVsKNTC10.022
201581949520:15819495:A:Grs8123881GIntronicMACROD20.022
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.022
6348270856:34827085:A:Trs9469913TPAVsUHRF1BP10.022
1211716097612:117160976:T:Crs10507274CPAVsC12orf49-0.022
41002393194:100239319:T:Crs1229984CPAVsADH1B0.022
115463041:1546304:C:Trs11492279TOthersMIB2-0.021
6131892756:13189275:T:Crs9367368CIntronicPHACTR1-0.021
4652270494:65227049:T:Crs7678517CIntronicTECRL-0.021
19224562219:2245622:G:Ars45521740AOthersSF3A20.021
165375688516:53756885:A:Grs76488452GIntronicFTO0.021
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.021
81382152288:138215228:G:Ars16906845AOthers-0.021
109977240410:99772404:G:Ars563296AIntronicCRTAC10.021
5957288985:95728898:C:Grs6235GPAVsPCSK10.020
102183010410:21830104:A:Grs11012732GIntronicMLLT100.020
6348246366:34824636:A:Grs11755393GPAVsUHRF1BP10.020
193029081119:30290811:A:Grs17513752GOthers0.020
191941309219:19413092:C:Trs17751061TPAVsSUGP1-0.020
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.020
162037081016:20370810:C:Trs9652588TPAVsPDILT-0.020
3517550653:51755065:T:Crs4687770COthersGRM2-0.020
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.020
6508658206:50865820:C:Trs943005TOthersRP4-753D5.30.020
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.020
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.019
8772282228:77228222:A:Grs1405348GOthers0.019
204200141820:42001418:A:Crs6017023COthers-0.019
9284143399:28414339:A:Grs10968576GIntronicLINGO20.019
12018692571:201869257:G:Ars2820312APAVsLMOD10.019
184260609118:42606091:C:Trs9967367TIntronicSETBP1-0.019
1321654951:32165495:G:Trs2228552TPAVsCOL16A10.019
51039440205:103944020:G:Trs254024TIntronicRP11-6N13.10.018
41027093084:102709308:T:Crs11097755CIntronicBANK10.018
1786236261:78623626:C:Trs17391694TOthers0.018
182112044418:21120444:T:Crs1805082CPAVsNPC1-0.018
9167194459:16719445:C:Trs10962549TIntronicBNC20.018
213263855021:32638550:C:Trs2070418TPAVsTIAM1-0.018
8308543798:30854379:T:Crs17648656CIntronicPURG-0.018
134075977313:40759773:T:Crs10507483CIntronicLINC003320.018
173485428017:34854280:G:Ars2306590APAVsMYO19-0.018
106183129010:61831290:T:Crs28932171CPAVsANK30.018
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.017
22368176292:236817629:C:Trs4663215TIntronicAGAP1-0.017
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.017
71135037037:113503703:G:Ars10247621AOthers-0.017
1779675231:77967523:C:Trs12049202TIntronicAK50.017
167126456116:71264561:A:Grs3743953GPTVsHYDIN-0.017
11903031491:190303149:C:Trs648091TIntronicRP11-547I7.1, BRINP3-0.017
1010243304610:102433046:C:Trs11190644TOthers0.017
114365653511:43656535:G:Ars2862961AIntronicHSD17B12-0.017
7774235607:77423560:ATCCAGACTGGAATG:Ars866484129APTVsTMEM600.017
7766081437:76608143:C:Trs2245368TOthersDTX2P1-0.017
51531770535:153177053:C:Trs2963998TIntronicGRIA1-0.017
21989502402:198950240:G:Ars1064213APAVsPLCL10.017
2354635562:35463556:G:Ars1837452AOthers-0.017
1212048863612:120488636:G:Ars5028648AIntronicCCDC64-0.016
31731193783:173119378:G:Ars488029AIntronicNLGN10.016
11102107801:110210780:C:Grs530021GPAVsGSTM2-0.016
4656572134:65657213:A:Grs2060028GOthers-0.016
163108862516:31088625:A:Grs749670GPAVsZNF646-0.016
21008300402:100830040:T:Crs4303732CIntronicLINC01104-0.016
158458212415:84582124:G:Trs4842838TPAVsADAMTSL30.016
31252051063:125205106:A:Grs9848399GIntronicSNX4-0.016
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.016
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.016
1010457296310:104572963:T:Crs284860CPAVsWBP1L-0.016
194962196419:49621964:T:Crs2232003CPAVsC19orf73-0.016

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 30794 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References