Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Leg fat-free mass (left)


Leg fat-free mass L iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23117/INI23117.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23117/INI23117.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23117/INI23117.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23117/INI23117.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23117/INI23117.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.643[0.639, 0.648]<1.0x10-300
white BritishGenotype-only modelR20.054[0.051, 0.057]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.697[0.693, 0.701]<1.0x10-300
Non-British whiteCovariate-only modelR20.644[0.623, 0.664]<1.0x10-300
Non-British whiteGenotype-only modelR20.060[0.043, 0.076]7.7x10-40
Non-British whiteFull model (covariates and genotypes)R20.701[0.683, 0.719]<1.0x10-300
South AsianCovariate-only modelR20.615[0.584, 0.646]2.3x10-303
South AsianGenotype-only modelR20.026[0.010, 0.041]8.4x10-10
South AsianFull model (covariates and genotypes)R20.656[0.627, 0.684]<1.0x10-300
AfricanCovariate-only modelR20.506[0.466, 0.545]2.7x10-180
AfricanGenotype-only modelR20.006[-0.003, 0.014]1.0x10-02
AfricanFull model (covariates and genotypes)R20.504[0.465, 0.544]1.2x10-179
OthersCovariate-only modelR20.660[0.648, 0.672]<1.0x10-300
OthersGenotype-only modelR20.039[0.031, 0.047]1.1x10-69
OthersFull model (covariates and genotypes)R20.699[0.688, 0.710]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23117/INI23117.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 38764 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
24171672:417167:T:Crs62106258COthersAC105393.2-0.080
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.067
165380095416:53800954:T:Crs1421085CIntronicFTO0.062
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-0.043
81205960238:120596023:A:Grs10283100GPAVsENPP20.037
158940068015:89400680:A:Grs28407189GPAVsACAN-0.036
11778894801:177889480:A:Grs543874GOthersSEC16B0.036
2277309402:27730940:T:Crs1260326CPAVsGCKR0.035
6198394156:19839415:C:Trs41271299TIntronicID40.035
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.034
26378302:637830:A:Grs13393304GOthers0.034
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.034
11549913891:154991389:T:Crs905938CIntronicDCST20.033
203402575620:34025756:A:Grs143384GUTRGDF50.033
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.031
146097653714:60976537:C:Ars33912345APAVsSIX6-0.030
4180254844:18025484:G:Ars2011603AOthersLCORL-0.030
185785176318:57851763:A:Grs10871777GOthers0.030
112767991611:27679916:C:Trs6265TPAVsBDNF-0.030
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.029
194756900319:47569003:G:Ars3810291AUTRZC3H40.029
1786236261:78623626:C:Trs17391694TOthers0.028
185783976918:57839769:C:Ars571312AOthers0.028
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.028
1212482646212:124826462:C:Trs2229840TPAVsNCOR20.028
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.027
125714606912:57146069:T:Grs2277339GPAVsPRIM1-0.026
156745769815:67457698:A:Grs35874463GPAVsSMAD30.026
41551604244:155160424:A:ACrs546143621ACPTVsDCHS2-0.026
109603959710:96039597:G:Crs2274224CPAVsPLCE10.025
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.025
5774412995:77441299:C:Ars10755299AIntronicAP3B1-0.025
4179535904:17953590:A:Grs16896128GIntronicLCORL-0.025
31413266023:141326602:T:Crs295322CPAVsRASA20.024
147994264714:79942647:G:Ars7156625AIntronicNRXN30.024
21724129072:172412907:A:Crs3821083CUTRCYBRD1-0.024
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN10.024
31855486833:185548683:G:Ars720390AOthers0.024
81356498488:135649848:G:Ars12541381APAVsZFAT-0.024
51273505495:127350549:C:Trs3749748TIntronicCTC-228N24.30.024
413415534:1341553:A:Grs111391498GPAVsUVSSA-0.023
4451798834:45179883:C:Trs12641981TOthers0.023
135072289513:50722895:C:Ars1326122AIntronicDLEU10.023
81382152288:138215228:G:Ars16906845AOthers-0.022
31411060633:141106063:T:Crs7632381COthersZBTB380.022
2333595652:33359565:G:Ars116713089AUTRLTBP1-0.021
17758005217:7580052:C:Trs8079544TIntronicTP530.021
16401346716:4013467:C:Trs2531995TUTRADCY90.021
31289711133:128971113:T:Crs4927953CPAVsCOPG10.021
195601157319:56011573:C:Trs61747393TPAVsSSC5D-0.021
129397670312:93976703:C:Trs7310512TIntronicSOCS20.021
161994436316:19944363:A:Grs11639988GOthers-0.021
121287109912:12871099:T:Grs2066827GPAVsCDKN1B-0.021
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.021
41455651164:145565116:G:Ars7680661AIntronicHHIP-AS10.020
125764864412:57648644:C:Trs78607331TPAVsR3HDM20.020
9982563099:98256309:G:Ars10512249AIntronicPTCH10.020
126624189812:66241898:G:Ars7961706AIntronicHMGA2-0.020
71505545537:150554553:C:Trs1049742TPAVsAOC1-0.020
31719690773:171969077:C:Grs7652177GPAVsFNDC3B0.020
202112054320:21120543:C:Trs4815021TIntronicPLK1S1-0.020
3116404813:11640481:A:Grs17776719GIntronicVGLL40.020
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.020
51227333175:122733317:G:Ars7711753AIntronicCEP120-0.019
213967147621:39671476:G:Ars2230033APAVsKCNJ15-0.019
61266987196:126698719:A:Grs9388489GOthers0.019
193029081119:30290811:A:Grs17513752GOthers0.019
1010226908510:102269085:C:Ars3793706APAVsSEC31B-0.019
71506805067:150680506:T:Grs4496877GOthers0.019
158938665215:89386652:G:Ars34949187APAVsACAN-0.018
126635182612:66351826:T:Crs1351394CUTRHMGA2-0.018
1779675231:77967523:C:Trs12049202TIntronicAK50.018
165347425016:53474250:G:Ars16952242AIntronicRBL20.018
1213339332312:133393323:C:Trs2291256TPAVsGOLGA30.018
156231603515:62316035:C:Trs12595158TPAVsVPS13C-0.018
12336809312:3368093:G:Ars10491967AIntronicTSPAN90.018
205110729020:51107290:C:Trs17806379TIntronicRP5-1022J11.2, RP4-723E3.1-0.018
51682562405:168256240:G:Ars4282339AIntronicSLIT3-0.018
107958097610:79580976:G:Ars41274586APAVsDLG5-0.018
11281073111:2810731:C:Trs2237886TIntronicKCNQ10.018
9983199699:98319969:T:Crs17370391COthers0.018
61260906086:126090608:A:Grs9398787GOthers0.018
8777619198:77761919:C:Trs61729527TPAVsZFHX4-0.018
1510171823915:101718239:C:Grs62621400GPAVsCHSY1-0.018
5828151705:82815170:A:Grs61749613GPAVsVCAN0.018
203230827520:32308275:C:Trs67611724TOthersPXMP4-0.018
41027093084:102709308:T:Crs11097755CIntronicBANK10.018
6903248496:90324849:A:Grs1179907GIntronicLYRM2, ANKRD60.018
125024746812:50247468:G:Ars7138803AOthers0.018
171188135617:11881356:G:Ars117755721APAVsZNF18-0.018
X78649193X:78649193:C:Trs1474563TOthers0.017
109874275010:98742750:A:Crs3829856CPAVsC10orf12-0.017
11499064131:149906413:T:Crs11205303CPAVsMTMR110.017
134275170713:42751707:T:Crs12585865CIntronicDGKH-0.017
5369999985:36999998:A:Grs159751GIntronicNIPBL-0.017
155572288215:55722882:C:Ars57809907APTVsDYX1C1-0.017
31290207783:129020778:A:Grs6765930GPAVsHMCES0.017
1012667167310:126671673:T:Crs2241541CIntronicZRANB10.017
12186154511:218615451:A:Crs991967CUTRTGFB20.017
91191292579:119129257:T:Crs7033487CIntronicPAPPA-0.017

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 38764 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References