Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Arm fat percentage (right)


Arm fat % R iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23119/INI23119.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23119/INI23119.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23119/INI23119.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23119/INI23119.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23119/INI23119.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.462[0.457, 0.468]<1.0x10-300
white BritishGenotype-only modelR20.051[0.048, 0.055]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.514[0.509, 0.520]<1.0x10-300
Non-British whiteCovariate-only modelR20.426[0.399, 0.454]<1.0x10-300
Non-British whiteGenotype-only modelR20.050[0.034, 0.065]3.4x10-33
Non-British whiteFull model (covariates and genotypes)R20.482[0.456, 0.508]<1.0x10-300
South AsianCovariate-only modelR20.634[0.604, 0.663]1.9x10-308
South AsianGenotype-only modelR20.033[0.015, 0.050]4.0x10-12
South AsianFull model (covariates and genotypes)R20.649[0.621, 0.678]<1.0x10-300
AfricanCovariate-only modelR20.636[0.603, 0.668]1.5x10-257
AfricanGenotype-only modelR20.010[-0.001, 0.021]6.7x10-04
AfricanFull model (covariates and genotypes)R20.618[0.584, 0.651]2.6x10-245
OthersCovariate-only modelR20.441[0.424, 0.457]<1.0x10-300
OthersGenotype-only modelR20.050[0.041, 0.059]2.9x10-89
OthersFull model (covariates and genotypes)R20.482[0.466, 0.498]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23119/INI23119.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 32448 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
165380095416:53800954:T:Crs1421085CIntronicFTO0.414
24171672:417167:T:Crs62106258COthersAC105393.2-0.390
11778894801:177889480:A:Grs543874GOthersSEC16B0.248
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.221
3123931253:12393125:C:Grs1801282GPAVsPPARG0.205
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.194
26228272:622827:T:Crs2867125COthers0.182
2251415382:25141538:A:Grs11676272GPAVsADCY30.177
185785258718:57852587:T:Crs476828COthers0.166
51458953945:145895394:G:Ars114285050APTVsGPR151-0.157
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.153
4451798834:45179883:C:Trs12641981TOthers0.150
147994516214:79945162:A:Grs10146997GIntronicNRXN30.148
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.148
114752994711:47529947:C:Ars7124681AIntronicCELF10.145
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.139
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.133
194756900319:47569003:G:Ars3810291AUTRZC3H40.128
142968532814:29685328:G:Ars974471AOthers0.127
3517550653:51755065:T:Crs4687770COthersGRM2-0.123
112767991611:27679916:C:Trs6265TPAVsBDNF-0.123
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.122
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.119
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.118
114365653511:43656535:G:Ars2862961AIntronicHSD17B12-0.118
145092324914:50923249:C:Trs12881869TPAVsMAP4K50.116
11102107801:110210780:C:Grs530021GPAVsGSTM2-0.116
161994436316:19944363:A:Grs11639988GOthers-0.115
31858223533:185822353:T:Grs10513801GIntronicETV5-0.113
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.113
6348246366:34824636:A:Grs11755393GPAVsUHRF1BP10.112
125024746812:50247468:G:Ars7138803AOthers0.112
16401346716:4013467:C:Trs2531995TUTRADCY90.110
176583874317:65838743:T:Grs8074078GIntronicBPTF0.110
6403719186:40371918:C:Trs1579557TIntronicLRFN20.109
21629040132:162904013:T:Crs116302758CPTVsDPP4-0.106
22368176292:236817629:C:Trs4663215TIntronicAGAP1-0.103
3124269363:12426936:G:Trs10510419TIntronicPPARG-0.103
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.102
17182430517:1824305:C:Ars4790292AOthers-0.102
3499249403:49924940:T:Crs1062633CPAVsMST1R0.101
167126456116:71264561:A:Grs3743953GPTVsHYDIN-0.100
91341050489:134105048:A:Grs28665311GPTVsNUP214-0.100
31413266023:141326602:T:Crs295322CPAVsRASA20.099
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.098
115463041:1546304:C:Trs11492279TOthersMIB2-0.098
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.098
7990817307:99081730:A:Grs6962772GPAVsZNF789-0.097
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.097
21915355762:191535576:T:Crs2286896CIntronicNAB10.097
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.097
8734390708:73439070:A:Grs1431659GOthers-0.096
109977240410:99772404:G:Ars563296AIntronicCRTAC10.096
8772282228:77228222:A:Grs1405348GOthers0.095
20662168520:6621685:C:Trs2145270TOthers0.095
12196442241:219644224:A:Grs2605100GOthers-0.094
184260609118:42606091:C:Trs9967367TIntronicSETBP1-0.093
5877300275:87730027:A:Grs7444298GOthersCTC-498M16.4-0.093
6437570826:43757082:T:Ars4711750AOthersVEGFA-0.092
1210427371812:104273718:C:Trs17180749TIntronicRP11-642P15.10.092
156225498915:62254989:T:Crs3784635CPAVsVPS13C-0.092
162888324116:28883241:A:Grs7498665GPAVsSH2B10.092
1211716097612:117160976:T:Crs10507274CPAVsC12orf49-0.091
81382152288:138215228:G:Ars16906845AOthers-0.091
5879595385:87959538:T:Grs13174131GIntronicLINC004610.091
1010243304610:102433046:C:Trs11190644TOthers0.090
135408403213:54084032:G:Ars4883723AOthers0.090
163108862516:31088625:A:Grs749670GPAVsZNF646-0.089
31294378363:129437836:C:Trs9990031TIntronicTMCC1-0.088
9284123759:28412375:T:Crs2183825CIntronicLINGO20.088
6131892756:13189275:T:Crs9367368CIntronicPHACTR1-0.088
1012882040710:128820407:A:Crs9418789CIntronicRP11-223P11.3, DOCK1, RP11-223P11.2-0.088
224887569922:48875699:C:Trs9615905TOthers0.087
91293705769:129370576:G:Ars2275241AOthersRP11-123K19.10.087
11903031491:190303149:C:Trs648091TIntronicRP11-547I7.1, BRINP3-0.086
3647081143:64708114:C:Trs4132228TIntronicADAMTS9-AS20.086
6508658206:50865820:C:Trs943005TOthersRP4-753D5.30.085
71304333847:130433384:C:Trs4731702TOthers0.085
204200141820:42001418:A:Crs6017023COthers-0.085
154124785915:41247859:A:Trs112036939TPTVsCHAC1-0.085
102183010410:21830104:A:Grs11012732GIntronicMLLT100.084
2468954852:46895485:T:Crs17035489COthers-0.084
7774235607:77423560:ATCCAGACTGGAATG:Ars866484129APTVsTMEM600.084
12019345781:201934578:G:Ars4648APAVsTIMM17A0.083
125442181012:54421810:T:Crs10876529CIntronicRP11-834C11.14, RP11-834C11.12, HOXC4, HOXC60.083
5880215275:88021527:T:Grs34320GIntronicMEF2C-0.083
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.083
134075977313:40759773:T:Crs10507483CIntronicLINC003320.083
91361434429:136143442:A:Grs612169GIntronicABO0.083
182112044418:21120444:T:Crs1805082CPAVsNPC1-0.082
1212308744212:123087442:A:Grs7307735GPAVsKNTC10.082
224208962322:42089623:T:Crs739134CPAVsC22orf46-0.082
22041545522:204154552:C:Trs1048013TPAVsCYP20A10.082
41027093084:102709308:T:Crs11097755CIntronicBANK10.082
191822472919:18224729:C:Trs273512TIntronicMAST30.081
7143279667:14327966:A:Grs7785249GIntronicDGKB0.081
11499064131:149906413:T:Crs11205303CPAVsMTMR110.081
185502733318:55027333:CG:Crs112792874CPTVsST8SIA3-0.081
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.081
71135037037:113503703:G:Ars10247621AOthers-0.080

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 32448 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References