Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Arm fat-free mass (right)


Arm fat-free mass R iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23121/INI23121.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23121/INI23121.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23121/INI23121.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23121/INI23121.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23121/INI23121.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.721[0.717, 0.724]<1.0x10-300
white BritishGenotype-only modelR20.042[0.039, 0.045]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.763[0.760, 0.766]<1.0x10-300
Non-British whiteCovariate-only modelR20.716[0.699, 0.734]<1.0x10-300
Non-British whiteGenotype-only modelR20.055[0.039, 0.071]5.9x10-37
Non-British whiteFull model (covariates and genotypes)R20.763[0.748, 0.778]<1.0x10-300
South AsianCovariate-only modelR20.689[0.663, 0.715]<1.0x10-300
South AsianGenotype-only modelR20.026[0.010, 0.042]7.4x10-10
South AsianFull model (covariates and genotypes)R20.725[0.701, 0.749]<1.0x10-300
AfricanCovariate-only modelR20.642[0.609, 0.674]1.3x10-261
AfricanGenotype-only modelR20.009[-0.001, 0.020]9.7x10-04
AfricanFull model (covariates and genotypes)R20.644[0.612, 0.676]2.2x10-263
OthersCovariate-only modelR20.730[0.720, 0.741]<1.0x10-300
OthersGenotype-only modelR20.032[0.025, 0.040]6.8x10-58
OthersFull model (covariates and genotypes)R20.761[0.752, 0.770]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23121/INI23121.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 38650 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
24171672:417167:T:Crs62106258COthersAC105393.2-0.022
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.021
6198394156:19839415:C:Trs41271299TIntronicID40.017
158940068015:89400680:A:Grs28407189GPAVsACAN-0.016
165380095416:53800954:T:Crs1421085CIntronicFTO0.016
2277309402:27730940:T:Crs1260326CPAVsGCKR0.014
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.014
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-0.014
5828151705:82815170:A:Grs61749613GPAVsVCAN0.014
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.014
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.013
81205960238:120596023:A:Grs10283100GPAVsENPP20.013
146097653714:60976537:C:Ars33912345APAVsSIX6-0.012
203402575620:34025756:A:Grs143384GUTRGDF50.012
12010162961:201016296:G:Ars3850625APAVsCACNA1S-0.012
109603959710:96039597:G:Crs2274224CPAVsPLCE10.011
4179600084:17960008:T:Crs11945359CIntronicLCORL-0.011
11778894801:177889480:A:Grs543874GOthersSEC16B0.011
11549913891:154991389:T:Crs905938CIntronicDCST20.011
31855486833:185548683:G:Ars720390AOthers0.011
135072289513:50722895:C:Ars1326122AIntronicDLEU10.011
4180254844:18025484:G:Ars2011603AOthersLCORL-0.010
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.010
145092324914:50923249:C:Trs12881869TPAVsMAP4K5-0.010
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.010
11767940661:176794066:G:Ars1325596AIntronicPAPPA20.010
125714606912:57146069:T:Grs2277339GPAVsPRIM1-0.010
221762591522:17625915:G:Ars35665085APAVsCECR5-0.009
154198909115:41989091:C:Ars61736074APAVsMGA-0.009
61303491196:130349119:C:Trs6569648TIntronicL3MBTL3-0.009
677200596:7720059:G:Ars12198986AOthers0.009
31411060633:141106063:T:Crs7632381COthersZBTB380.009
2333595652:33359565:G:Ars116713089AUTRLTBP1-0.009
5774412995:77441299:C:Ars10755299AIntronicAP3B1-0.009
194756900319:47569003:G:Ars3810291AUTRZC3H40.008
1786236261:78623626:C:Trs17391694TOthers0.008
51682562405:168256240:G:Ars4282339AIntronicSLIT3-0.008
41455651164:145565116:G:Ars7680661AIntronicHHIP-AS10.008
31413266023:141326602:T:Crs295322CPAVsRASA20.008
185783976918:57839769:C:Ars571312AOthers0.008
31721634493:172163449:G:Ars509035AIntronicGHSR0.008
21724129072:172412907:A:Crs3821083CUTRCYBRD1-0.008
156745769815:67457698:A:Grs35874463GPAVsSMAD30.008
672408766:7240876:G:Ars41302867AIntronicRREB1-0.008
1212482646212:124826462:C:Trs2229840TPAVsNCOR20.008
413415534:1341553:A:Grs111391498GPAVsUVSSA-0.008
195587967219:55879672:C:Trs4252548TPAVsIL11-0.008
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.008
185785109718:57851097:T:Crs17782313COthers0.008
11281073111:2810731:C:Trs2237886TIntronicKCNQ10.008
8777619198:77761919:C:Trs61729527TPAVsZFHX4-0.008
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.008
9983199699:98319969:T:Crs17370391COthers0.008
61266987196:126698719:A:Grs9388489GOthers0.008
81356498488:135649848:G:Ars12541381APAVsZFAT-0.008
112767991611:27679916:C:Trs6265TPAVsBDNF-0.008
7922589617:92258961:C:Trs17766836TIntronicCDK60.008
51025372855:102537285:A:Grs36046591GPAVsPPIP5K2-0.008
31719690773:171969077:C:Grs7652177GPAVsFNDC3B0.008
31290207783:129020778:A:Grs6765930GPAVsHMCES0.007
51227333175:122733317:G:Ars7711753AIntronicCEP120-0.007
185785176318:57851763:A:Grs10871777GOthers0.007
728018037:2801803:C:Trs798489TPTVsGNA12-0.007
16226787716:2267877:G:Ars27345AOthersPGP0.007
61607703126:160770312:A:Grs474513GIntronicSLC22A30.007
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.007
X38009121X:38009121:G:Ars35318931APAVsSRPX-0.007
224207037422:42070374:A:Crs41311445CUTRNHP2L1-0.007
71506805067:150680506:T:Grs4496877GOthers0.007
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN10.007
147994264714:79942647:G:Ars7156625AIntronicNRXN30.007
187498305518:74983055:A:Grs8097893GOthersGALR1-0.007
41551604244:155160424:A:ACrs546143621ACPTVsDCHS2-0.007
22115405072:211540507:C:Ars1047891APAVsCPS10.007
31411218143:141121814:A:Crs2871960CUTRZBTB380.007
71505545537:150554553:C:Trs1049742TPAVsAOC1-0.007
21769643042:176964304:C:Ars711812AOthersHOXD12, HOXD110.007
X78649193X:78649193:C:Trs1474563TOthers0.007
158938665215:89386652:G:Ars34949187APAVsACAN-0.007
5957288985:95728898:C:Grs6235GPAVsPCSK10.007
1012667167310:126671673:T:Crs2241541CIntronicZRANB10.007
12185964611:218596461:A:Grs6657275GIntronicTGFB20.007
61089948266:108994826:G:Ars9398172AIntronicFOXO30.007
31839761033:183976103:C:Trs11546878TPAVsECE2-0.007
6341657216:34165721:A:Grs7742369GOthers0.007
159919489615:99194896:C:Grs2871865GIntronicIGF1R-0.007
121287109912:12871099:T:Grs2066827GPAVsCDKN1B-0.007
213967147621:39671476:G:Ars2230033APAVsKCNJ15-0.007
172923674517:29236745:G:Ars35958868AIntronicADAP2-0.007
8493822768:49382276:C:Trs10110839TOthers0.007
6366456966:36645696:A:Grs2395655GPAVsCDKN1A0.007
134275170713:42751707:T:Crs12585865CIntronicDGKH-0.007
1779675231:77967523:C:Trs12049202TIntronicAK50.007
126624189812:66241898:G:Ars7961706AIntronicHMGA2-0.006
9982563099:98256309:G:Ars10512249AIntronicPTCH10.006
205110729020:51107290:C:Trs17806379TIntronicRP5-1022J11.2, RP4-723E3.1-0.006
4451798834:45179883:C:Trs12641981TOthers0.006
12146222531:214622253:C:Trs10494977TIntronicPTPN14-0.006
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-0.006
1410389200014:103892000:G:Ars10148970AIntronicMARK3-0.006

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 38650 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References