Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Arm fat percentage (left)


Arm fat % L iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23123/INI23123.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23123/INI23123.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23123/INI23123.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23123/INI23123.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23123/INI23123.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.465[0.460, 0.471]<1.0x10-300
white BritishGenotype-only modelR20.052[0.049, 0.056]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.519[0.513, 0.524]<1.0x10-300
Non-British whiteCovariate-only modelR20.428[0.400, 0.455]<1.0x10-300
Non-British whiteGenotype-only modelR20.048[0.033, 0.063]3.8x10-32
Non-British whiteFull model (covariates and genotypes)R20.483[0.457, 0.510]<1.0x10-300
South AsianCovariate-only modelR20.604[0.573, 0.636]6.1x10-295
South AsianGenotype-only modelR20.038[0.019, 0.057]7.8x10-14
South AsianFull model (covariates and genotypes)R20.624[0.594, 0.654]1.9x10-308
AfricanCovariate-only modelR20.623[0.590, 0.656]8.3x10-249
AfricanGenotype-only modelR20.010[-0.001, 0.021]7.7x10-04
AfricanFull model (covariates and genotypes)R20.606[0.572, 0.641]6.6x10-238
OthersCovariate-only modelR20.437[0.421, 0.453]<1.0x10-300
OthersGenotype-only modelR20.051[0.042, 0.060]2.1x10-91
OthersFull model (covariates and genotypes)R20.480[0.465, 0.496]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23123/INI23123.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 32450 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
165380095416:53800954:T:Crs1421085CIntronicFTO0.411
24171672:417167:T:Crs62106258COthersAC105393.2-0.386
11778894801:177889480:A:Grs543874GOthersSEC16B0.280
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.269
3123931253:12393125:C:Grs1801282GPAVsPPARG0.208
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.203
2251415382:25141538:A:Grs11676272GPAVsADCY30.183
185785258718:57852587:T:Crs476828COthers0.160
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.158
147994516214:79945162:A:Grs10146997GIntronicNRXN30.154
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.154
4451798834:45179883:C:Trs12641981TOthers0.151
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.149
51458953945:145895394:G:Ars114285050APTVsGPR151-0.141
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.139
114752994711:47529947:C:Ars7124681AIntronicCELF10.138
194756900319:47569003:G:Ars3810291AUTRZC3H40.131
176583874317:65838743:T:Grs8074078GIntronicBPTF0.129
112767991611:27679916:C:Trs6265TPAVsBDNF-0.129
142968532814:29685328:G:Ars974471AOthers0.127
125024746812:50247468:G:Ars7138803AOthers0.125
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.125
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.124
6348246366:34824636:A:Grs11755393GPAVsUHRF1BP10.123
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.122
31858223533:185822353:T:Grs10513801GIntronicETV5-0.119
16401346716:4013467:C:Trs2531995TUTRADCY90.117
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.117
11102107801:110210780:C:Grs530021GPAVsGSTM2-0.115
3517550653:51755065:T:Crs4687770COthersGRM2-0.115
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.114
167126456116:71264561:A:Grs3743953GPTVsHYDIN-0.113
6403719186:40371918:C:Trs1579557TIntronicLRFN20.107
109977240410:99772404:G:Ars563296AIntronicCRTAC10.105
1210427371812:104273718:C:Trs17180749TIntronicRP11-642P15.10.104
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.104
61533816226:153381622:A:Crs2185027CIntronicRGS170.103
114365653511:43656535:G:Ars2862961AIntronicHSD17B12-0.103
21655408002:165540800:T:Crs12328675CUTRCOBLL10.103
1010243304610:102433046:C:Trs11190644TOthers0.102
26357212:635721:T:Crs6755502COthers0.101
3124269363:12426936:G:Trs10510419TIntronicPPARG-0.101
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.101
5879595385:87959538:T:Grs13174131GIntronicLINC004610.100
6508658206:50865820:C:Trs943005TOthersRP4-753D5.30.100
145092324914:50923249:C:Trs12881869TPAVsMAP4K50.100
8772282228:77228222:A:Grs1405348GOthers0.099
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.099
6437570826:43757082:T:Ars4711750AOthersVEGFA-0.098
3499249403:49924940:T:Crs1062633CPAVsMST1R0.098
115463041:1546304:C:Trs11492279TOthersMIB2-0.098
22368176292:236817629:C:Trs4663215TIntronicAGAP1-0.097
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.097
17182430517:1824305:C:Ars4790292AOthers-0.096
106183129010:61831290:T:Crs28932171CPAVsANK30.096
21629040132:162904013:T:Crs116302758CPTVsDPP4-0.096
31413266023:141326602:T:Crs295322CPAVsRASA20.096
184260609118:42606091:C:Trs9967367TIntronicSETBP1-0.095
12196442241:219644224:A:Grs2605100GOthers-0.092
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.092
224208962322:42089623:T:Crs739134CPAVsC22orf46-0.092
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.092
8734390708:73439070:A:Grs1431659GOthers-0.091
91341050489:134105048:A:Grs28665311GPTVsNUP214-0.091
1012882040710:128820407:A:Crs9418789CIntronicRP11-223P11.3, DOCK1, RP11-223P11.2-0.091
7990817307:99081730:A:Grs6962772GPAVsZNF789-0.091
134075977313:40759773:T:Crs10507483CIntronicLINC003320.090
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.089
1983488851:98348885:G:Ars1801265APAVsDPYD-0.089
11903031491:190303149:C:Trs648091TIntronicRP11-547I7.1, BRINP3-0.089
224887569922:48875699:C:Trs9615905TOthers0.089
7143279667:14327966:A:Grs7785249GIntronicDGKB0.088
26228272:622827:T:Crs2867125COthers0.088
1211716097612:117160976:T:Crs10507274CPAVsC12orf49-0.087
163108862516:31088625:A:Grs749670GPAVsZNF646-0.087
135408403213:54084032:G:Ars4883723AOthers0.086
154124785915:41247859:A:Trs112036939TPTVsCHAC1-0.086
5557963195:55796319:C:Trs40271TOthersAC022431.1-0.086
128977190312:89771903:T:Crs704061COthers0.086
5880215275:88021527:T:Grs34320GIntronicMEF2C-0.086
720828417:2082841:A:Grs1533829GIntronicMAD1L1-0.085
191822472919:18224729:C:Trs273512TIntronicMAST30.085
51535378935:153537893:G:Trs7715256TIntronicMFAP3-0.085
21915355762:191535576:T:Crs2286896CIntronicNAB10.084
31294378363:129437836:C:Trs9990031TIntronicTMCC1-0.084
2468954852:46895485:T:Crs17035489COthers-0.084
182112044418:21120444:T:Crs1805082CPAVsNPC1-0.084
81382152288:138215228:G:Ars16906845AOthers-0.083
11126377611:1263776:C:Trs2943510TPAVsMUC5B-0.083
193030568419:30305684:G:Ars3218036AIntronicCCNE10.083
11499064131:149906413:T:Crs11205303CPAVsMTMR110.083
7774235607:77423560:ATCCAGACTGGAATG:Ars866484129APTVsTMEM600.083
9167194459:16719445:C:Trs10962549TIntronicBNC20.082
162888324116:28883241:A:Grs7498665GPAVsSH2B10.082
6403637346:40363734:C:Trs930249TIntronicLRFN2-0.082
41002393194:100239319:T:Crs1229984CPAVsADH1B0.082
51707091785:170709178:G:Ars7708999AIntronicRANBP17-0.082
12019345781:201934578:G:Ars4648APAVsTIMM17A0.081
2269422562:26942256:A:Grs2384463GIntronicKCNK3-0.081
X8913826X:8913826:T:Crs5934505COthers-0.081

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 32450 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References