Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Arm fat-free mass (left)


Arm fat-free mass L iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23125/INI23125.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23125/INI23125.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23125/INI23125.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23125/INI23125.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23125/INI23125.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.692[0.688, 0.696]<1.0x10-300
white BritishGenotype-only modelR20.046[0.043, 0.049]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.738[0.735, 0.742]<1.0x10-300
Non-British whiteCovariate-only modelR20.690[0.671, 0.708]<1.0x10-300
Non-British whiteGenotype-only modelR20.059[0.043, 0.076]1.1x10-39
Non-British whiteFull model (covariates and genotypes)R20.740[0.724, 0.757]<1.0x10-300
South AsianCovariate-only modelR20.630[0.600, 0.660]1.9x10-308
South AsianGenotype-only modelR20.036[0.017, 0.054]4.0x10-13
South AsianFull model (covariates and genotypes)R20.673[0.646, 0.700]<1.0x10-300
AfricanCovariate-only modelR20.582[0.546, 0.618]1.7x10-222
AfricanGenotype-only modelR20.007[-0.002, 0.017]3.3x10-03
AfricanFull model (covariates and genotypes)R20.583[0.547, 0.619]3.6x10-223
OthersCovariate-only modelR20.701[0.690, 0.712]<1.0x10-300
OthersGenotype-only modelR20.036[0.028, 0.044]8.7x10-64
OthersFull model (covariates and genotypes)R20.735[0.726, 0.745]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23125/INI23125.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 39276 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.023
24171672:417167:T:Crs62106258COthersAC105393.2-0.022
6198394156:19839415:C:Trs41271299TIntronicID40.018
165380095416:53800954:T:Crs1421085CIntronicFTO0.018
158940068015:89400680:A:Grs28407189GPAVsACAN-0.017
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.016
81205960238:120596023:A:Grs10283100GPAVsENPP20.015
2277309402:27730940:T:Crs1260326CPAVsGCKR0.015
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-0.015
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.015
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.014
203402575620:34025756:A:Grs143384GUTRGDF50.014
146097653714:60976537:C:Ars33912345APAVsSIX6-0.013
31411060633:141106063:T:Crs7632381COthersZBTB380.013
5828151705:82815170:A:Grs61749613GPAVsVCAN0.013
12010162961:201016296:G:Ars3850625APAVsCACNA1S-0.012
109603959710:96039597:G:Crs2274224CPAVsPLCE10.012
11549913891:154991389:T:Crs905938CIntronicDCST20.011
135072289513:50722895:C:Ars1326122AIntronicDLEU10.011
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.011
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.011
31855486833:185548683:G:Ars720390AOthers0.011
11767940661:176794066:G:Ars1325596AIntronicPAPPA20.011
11778894801:177889480:A:Grs543874GOthersSEC16B0.011
185785109718:57851097:T:Crs17782313COthers0.011
125714606912:57146069:T:Grs2277339GPAVsPRIM1-0.011
51227333175:122733317:G:Ars7711753AIntronicCEP120-0.010
61303491196:130349119:C:Trs6569648TIntronicL3MBTL3-0.010
2333595652:33359565:G:Ars116713089AUTRLTBP1-0.010
31413266023:141326602:T:Crs295322CPAVsRASA20.010
112767991611:27679916:C:Trs6265TPAVsBDNF-0.010
185783976918:57839769:C:Ars571312AOthers0.010
221762591522:17625915:G:Ars35665085APAVsCECR5-0.009
195587967219:55879672:C:Trs4252548TPAVsIL11-0.009
1786236261:78623626:C:Trs17391694TOthers0.009
51682562405:168256240:G:Ars4282339AIntronicSLIT3-0.009
145092324914:50923249:C:Trs12881869TPAVsMAP4K5-0.009
194756900319:47569003:G:Ars3810291AUTRZC3H40.009
4179600084:17960008:T:Crs11945359CIntronicLCORL-0.009
413415534:1341553:A:Grs111391498GPAVsUVSSA-0.009
31721450263:172145026:T:Crs16845548COthersBZW1P10.009
4543394784:54339478:T:Crs12505040CIntronicFIP1L1, LNX1-0.009
1212482646212:124826462:C:Trs2229840TPAVsNCOR20.009
31721634493:172163449:G:Ars509035AIntronicGHSR0.009
9983199699:98319969:T:Crs17370391COthers0.009
51025372855:102537285:A:Grs36046591GPAVsPPIP5K2-0.009
5774412995:77441299:C:Ars10755299AIntronicAP3B1-0.008
21724129072:172412907:A:Crs3821083CUTRCYBRD1-0.008
4180254844:18025484:G:Ars2011603AOthersLCORL-0.008
5957288985:95728898:C:Grs6235GPAVsPCSK10.008
17758005217:7580052:C:Trs8079544TIntronicTP530.008
26228272:622827:T:Crs2867125COthers0.008
X78649193X:78649193:C:Trs1474563TOthers0.008
71506805067:150680506:T:Grs4496877GOthers0.008
12185964611:218596461:A:Grs6657275GIntronicTGFB20.008
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.008
X38009121X:38009121:G:Ars35318931APAVsSRPX-0.008
158938665215:89386652:G:Ars34949187APAVsACAN-0.008
81356498488:135649848:G:Ars12541381APAVsZFAT-0.008
16226787716:2267877:G:Ars27345AOthersPGP0.008
41455651164:145565116:G:Ars7680661AIntronicHHIP-AS10.008
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.008
156745769815:67457698:A:Grs35874463GPAVsSMAD30.008
672408766:7240876:G:Ars41302867AIntronicRREB1-0.008
4451798834:45179883:C:Trs12641981TOthers0.008
X102529190X:102529190:C:Grs6621640GPAVsTCEAL5-0.008
205110729020:51107290:C:Trs17806379TIntronicRP5-1022J11.2, RP4-723E3.1-0.008
16219978816:2199788:T:Grs36232GIntronicRAB260.008
61089881846:108988184:G:Ars2153960AIntronicFOXO30.008
8777619198:77761919:C:Trs61729527TPAVsZFHX4-0.008
71505545537:150554553:C:Trs1049742TPAVsAOC1-0.008
147994264714:79942647:G:Ars7156625AIntronicNRXN30.008
728018037:2801803:C:Trs798489TPTVsGNA12-0.007
11281073111:2810731:C:Trs2237886TIntronicKCNQ10.007
31719690773:171969077:C:Grs7652177GPAVsFNDC3B0.007
126635182612:66351826:T:Crs1351394CUTRHMGA2-0.007
22115405072:211540507:C:Ars1047891APAVsCPS10.007
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN10.007
31839761033:183976103:C:Trs11546878TPAVsECE2-0.007
7922589617:92258961:C:Trs17766836TIntronicCDK60.007
12146222531:214622253:C:Trs10494977TIntronicPTPN14-0.007
3116404813:11640481:A:Grs17776719GIntronicVGLL40.007
6366456966:36645696:A:Grs2395655GPAVsCDKN1A0.007
121287109912:12871099:T:Grs2066827GPAVsCDKN1B-0.007
182072432818:20724328:G:Ars4800148AIntronicCABLES10.007
6761645896:76164589:C:Ars12209223AIntronicFILIP10.007
31290207783:129020778:A:Grs6765930GPAVsHMCES0.007
61630010836:163001083:T:Crs13199223CIntronicPARK2-0.007
41551604244:155160424:A:ACrs546143621ACPTVsDCHS2-0.007
134275170713:42751707:T:Crs12585865CIntronicDGKH-0.007
26493472:649347:T:Grs1320338GOthers-0.007
8493822768:49382276:C:Trs10110839TOthers0.007
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-0.007
61260906086:126090608:A:Grs9398787GOthers0.007
1212308744212:123087442:A:Grs7307735GPAVsKNTC10.007
213967147621:39671476:G:Ars2230033APAVsKCNJ15-0.007
135111690113:51116901:G:Trs3118914TIntronicDLEU1-0.007
154198909115:41989091:C:Ars61736074APAVsMGA-0.007
9976076739:97607673:C:Trs12344157TIntronicC9orf3-0.007
12333426612:3334266:G:Trs3782816TIntronicTSPAN90.007

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 39276 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References