Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Trunk fat percentage


Trunk fat % iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23127/INI23127.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23127/INI23127.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23127/INI23127.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23127/INI23127.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23127/INI23127.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.193[0.188, 0.198]<1.0x10-300
white BritishGenotype-only modelR20.080[0.076, 0.084]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.274[0.268, 0.280]<1.0x10-300
Non-British whiteCovariate-only modelR20.162[0.137, 0.186]1.1x10-110
Non-British whiteGenotype-only modelR20.091[0.071, 0.111]1.1x10-60
Non-British whiteFull model (covariates and genotypes)R20.253[0.225, 0.280]1.5x10-181
South AsianCovariate-only modelR20.257[0.219, 0.295]1.2x10-95
South AsianGenotype-only modelR20.070[0.045, 0.095]9.8x10-25
South AsianFull model (covariates and genotypes)R20.313[0.274, 0.352]1.3x10-120
AfricanCovariate-only modelR20.356[0.312, 0.399]4.4x10-113
AfricanGenotype-only modelR20.011[-0.001, 0.023]3.0x10-04
AfricanFull model (covariates and genotypes)R20.323[0.280, 0.366]1.5x10-100
OthersCovariate-only modelR20.174[0.159, 0.189]<1.0x10-300
OthersGenotype-only modelR20.081[0.070, 0.093]3.8x10-146
OthersFull model (covariates and genotypes)R20.237[0.221, 0.253]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23127/INI23127.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 32770 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
3123931253:12393125:C:Grs1801282GPAVsPPARG0.272
165380095416:53800954:T:Crs1421085CIntronicFTO0.248
24171672:417167:T:Crs62106258COthersAC105393.2-0.248
5828151705:82815170:A:Grs61749613GPAVsVCAN-0.199
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.194
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.188
11778894801:177889480:A:Grs543874GOthersSEC16B0.176
11499064131:149906413:T:Crs11205303CPAVsMTMR110.175
109603959710:96039597:G:Crs2274224CPAVsPLCE1-0.173
51458953945:145895394:G:Ars114285050APTVsGPR151-0.166
158941524715:89415247:C:Grs3817428GPAVsACAN-0.163
147994516214:79945162:A:Grs10146997GIntronicNRXN30.159
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.155
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-0.155
11551750891:155175089:C:Trs72704117TPAVsTHBS3-0.151
5557963195:55796319:C:Trs40271TOthersAC022431.1-0.148
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.141
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.140
4451798834:45179883:C:Trs12641981TOthers0.134
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.134
176583874317:65838743:T:Grs8074078GIntronicBPTF0.128
X67652748X:67652748:C:Trs41303733TPAVsOPHN10.123
142968532814:29685328:G:Ars974471AOthers0.121
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.120
2251415382:25141538:A:Grs11676272GPAVsADCY30.120
114785725311:47857253:T:Crs3816605CPAVsNUP160-0.119
11551727251:155172725:T:Crs35154152CPAVsTHBS3-0.118
5880215275:88021527:T:Grs34320GIntronicMEF2C-0.116
1210427371812:104273718:C:Trs17180749TIntronicRP11-642P15.10.115
168998614416:89986144:C:Trs1805008TPAVsMC1R, TUBB3-0.112
1212081550412:120815504:A:Grs16950101GOthers-0.112
149311112014:93111120:C:Trs11624512TOthersRIN3-0.111
167126456116:71264561:A:Grs3743953GPTVsHYDIN-0.109
185783976918:57839769:C:Ars571312AOthers0.109
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.108
128974547712:89745477:C:Ars2279574APAVsDUSP6-0.106
4735153134:73515313:T:Crs7697556COthers-0.103
3124269363:12426936:G:Trs10510419TIntronicPPARG-0.103
7143279667:14327966:A:Grs7785249GIntronicDGKB0.100
8772282228:77228222:A:Grs1405348GOthers0.100
206236999720:62369997:C:Trs1151625TPAVsLIME1-0.099
1010243304610:102433046:C:Trs11190644TOthers0.099
9785151959:78515195:A:Grs35650604GIntronicPCSK5-0.098
12333999612:3339996:G:Ars3782809AIntronicTSPAN9-0.098
194756900319:47569003:G:Ars3810291AUTRZC3H40.097
16401346716:4013467:C:Trs2531995TUTRADCY90.097
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.097
22420217422:242021742:G:Trs2108485TPAVsSNED10.097
1969439941:96943994:T:Crs1973993COthers0.096
8177633658:17763365:G:Ars426372APTVsRP11-156K13.3-0.096
11102107801:110210780:C:Grs530021GPAVsGSTM2-0.096
204636563620:46365636:C:Trs56218501TPAVsSULF2-0.095
7774235607:77423560:ATCCAGACTGGAATG:Ars866484129APTVsTMEM600.095
125442181012:54421810:T:Crs10876529CIntronicRP11-834C11.14, RP11-834C11.12, HOXC4, HOXC60.094
109977240410:99772404:G:Ars563296AIntronicCRTAC10.094
4735450364:73545036:T:Crs2366305COthers0.094
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.093
154085698915:40856989:C:Trs3803354TPTVsC15orf57-0.093
125024746812:50247468:G:Ars7138803AOthers0.092
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.092
106183129010:61831290:T:Crs28932171CPAVsANK30.092
5879595385:87959538:T:Grs13174131GIntronicLINC004610.090
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.090
5877300275:87730027:A:Grs7444298GOthersCTC-498M16.4-0.089
184260609118:42606091:C:Trs9967367TIntronicSETBP1-0.088
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.088
71485259047:148525904:C:Grs2302427GPAVsEZH20.088
6121248556:12124855:G:Ars2228213APAVsHIVEP1-0.087
174392326617:43923266:G:Ars62054815APAVsSPPL2C-0.087
71304333847:130433384:C:Trs4731702TOthers0.087
162888324116:28883241:A:Grs7498665GPAVsSH2B10.087
169004832716:90048327:G:Ars45456401APTVsAFG3L1P0.087
193389906519:33899065:G:Ars731839AIntronicPEPD0.087
185502733318:55027333:CG:Crs112792874CPTVsST8SIA3-0.086
8734390708:73439070:A:Grs1431659GOthers-0.085
8308543798:30854379:T:Crs17648656CIntronicPURG-0.085
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.085
193030568419:30305684:G:Ars3218036AIntronicCCNE10.085
145092324914:50923249:C:Trs12881869TPAVsMAP4K50.085
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.085
21655408002:165540800:T:Crs12328675CUTRCOBLL10.085
71505246817:150524681:T:Crs10952289CIntronicAOC1-0.084
1211716097612:117160976:T:Crs10507274CPAVsC12orf49-0.084
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.084
146236046414:62360464:A:Grs217671GIntronicCTD-2277K2.10.084
19353558219:3535582:T:Crs8109960CUTRFZR10.083
102182285610:21822856:A:Grs10828247GOthersMLLT100.083
49830604:983060:T:Crs3796622CPAVsSLC26A1-0.083
71021119807:102111980:C:Trs12534337TOthersLRWD10.083
81166703478:116670347:C:Trs3808477TIntronicTRPS1-0.082
213263855021:32638550:C:Trs2070418TPAVsTIAM1-0.082
1510171823915:101718239:C:Grs62621400GPAVsCHSY1-0.082
11126377611:1263776:C:Trs2943510TPAVsMUC5B-0.082
12197625811:219762581:C:Ars2494196AOthers0.082
91341050489:134105048:A:Grs28665311GPTVsNUP214-0.081
41456590644:145659064:T:Crs11727676CPCVsHHIP0.080
146309440714:63094407:T:Crs4430672COthers-0.080
205172635720:51726357:T:Crs2525481CIntronicTSHZ2-0.080
6403637346:40363734:C:Trs930249TIntronicLRFN2-0.079
156745769815:67457698:A:Grs35874463GPAVsSMAD30.079

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 32770 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References