Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Trunk fat mass


Trunk fat mass iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23128/INI23128.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23128/INI23128.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23128/INI23128.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23128/INI23128.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23128/INI23128.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.013[0.011, 0.015]3.5x10-193
white BritishGenotype-only modelR20.116[0.111, 0.120]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.128[0.123, 0.132]<1.0x10-300
Non-British whiteCovariate-only modelR20.011[0.003, 0.018]2.4x10-08
Non-British whiteGenotype-only modelR20.132[0.109, 0.155]1.5x10-89
Non-British whiteFull model (covariates and genotypes)R20.139[0.116, 0.162]3.6x10-94
South AsianCovariate-only modelR20.022[0.007, 0.036]1.7x10-08
South AsianGenotype-only modelR20.114[0.084, 0.145]2.8x10-40
South AsianFull model (covariates and genotypes)R20.128[0.097, 0.160]2.9x10-45
AfricanCovariate-only modelR20.008[-0.002, 0.019]1.8x10-03
AfricanGenotype-only modelR20.016[0.002, 0.030]1.4x10-05
AfricanFull model (covariates and genotypes)R20.023[0.006, 0.040]1.9x10-07
OthersCovariate-only modelR20.059[0.049, 0.069]1.9x10-105
OthersGenotype-only modelR20.106[0.093, 0.118]3.5x10-192
OthersFull model (covariates and genotypes)R20.146[0.132, 0.160]9.1x10-271

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23128/INI23128.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 34357 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
24171672:417167:T:Crs62106258COthersAC105393.2-0.257
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.255
165380095416:53800954:T:Crs1421085CIntronicFTO0.243
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.163
3123931253:12393125:C:Grs1801282GPAVsPPARG0.162
11778894801:177889480:A:Grs543874GOthersSEC16B0.149
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-0.135
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.129
176583874317:65838743:T:Grs8074078GIntronicBPTF0.116
11499064131:149906413:T:Crs11205303CPAVsMTMR110.115
51458953945:145895394:G:Ars114285050APTVsGPR151-0.107
185785258718:57852587:T:Crs476828COthers0.107
4451798834:45179883:C:Trs12641981TOthers0.106
156745769815:67457698:A:Grs35874463GPAVsSMAD30.101
31413266023:141326602:T:Crs295322CPAVsRASA20.100
194756900319:47569003:G:Ars3810291AUTRZC3H40.099
147994516214:79945162:A:Grs10146997GIntronicNRXN30.098
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.097
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.094
158941524715:89415247:C:Grs3817428GPAVsACAN-0.094
142968532814:29685328:G:Ars974471AOthers0.094
6198394156:19839415:C:Trs41271299TIntronicID40.093
112767991611:27679916:C:Trs6265TPAVsBDNF-0.092
185783976918:57839769:C:Ars571312AOthers0.091
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.091
16401346716:4013467:C:Trs2531995TUTRADCY90.089
26375972:637597:C:Trs13388043TOthers0.088
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.086
125024746812:50247468:G:Ars7138803AOthers0.085
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.085
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.084
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.082
5557963195:55796319:C:Trs40271TOthersAC022431.1-0.081
5879637615:87963761:A:Grs1501672GIntronicLINC004610.081
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.078
8772282228:77228222:A:Grs1405348GOthers0.078
193030568419:30305684:G:Ars3218036AIntronicCCNE10.077
1212308744212:123087442:A:Grs7307735GPAVsKNTC10.077
184260609118:42606091:C:Trs9967367TIntronicSETBP1-0.077
9785151959:78515195:A:Grs35650604GIntronicPCSK5-0.076
1510171823915:101718239:C:Grs62621400GPAVsCHSY1-0.076
8734390708:73439070:A:Grs1431659GOthers-0.075
109977240410:99772404:G:Ars563296AIntronicCRTAC10.075
1786236261:78623626:C:Trs17391694TOthers0.075
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.074
1010243304610:102433046:C:Trs11190644TOthers0.074
1211716097612:117160976:T:Crs10507274CPAVsC12orf49-0.073
201581949520:15819495:A:Grs8123881GIntronicMACROD20.073
7774235607:77423560:ATCCAGACTGGAATG:Ars866484129APTVsTMEM600.073
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.072
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.072
3499249403:49924940:T:Crs1062633CPAVsMST1R0.072
81382152288:138215228:G:Ars16906845AOthers-0.072
3124269363:12426936:G:Trs10510419TIntronicPPARG-0.071
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.071
11102107801:110210780:C:Grs530021GPAVsGSTM2-0.071
5880215275:88021527:T:Grs34320GIntronicMEF2C-0.070
154085698915:40856989:C:Trs3803354TPTVsC15orf57-0.070
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.070
1210427371812:104273718:C:Trs17180749TIntronicRP11-642P15.10.070
166966668316:69666683:G:Ars244415AIntronicNFAT5-0.070
204636563620:46365636:C:Trs56218501TPAVsSULF2-0.069
156225498915:62254989:T:Crs3784635CPAVsVPS13C-0.069
204353243820:43532438:T:Crs12481468CIntronicYWHAB0.069
128974547712:89745477:C:Ars2279574APAVsDUSP6-0.068
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.068
5877300275:87730027:A:Grs7444298GOthersCTC-498M16.4-0.068
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.068
162888324116:28883241:A:Grs7498665GPAVsSH2B10.067
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.067
171188135617:11881356:G:Ars117755721APAVsZNF18-0.067
12186097021:218609702:A:Grs6684205GIntronicTGFB20.066
167126456116:71264561:A:Grs3743953GPTVsHYDIN-0.066
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.066
147063341114:70633411:C:Trs41286548TPAVsSLC8A3-0.066
8177633658:17763365:G:Ars426372APTVsRP11-156K13.3-0.066
135408403213:54084032:G:Ars4883723AOthers0.066
21008300402:100830040:T:Crs4303732CIntronicLINC01104-0.065
4735153134:73515313:T:Crs7697556COthers-0.065
1969439941:96943994:T:Crs1973993COthers0.065
158458212415:84582124:G:Trs4842838TPAVsADAMTSL30.065
134075977313:40759773:T:Crs10507483CIntronicLINC003320.065
158940068015:89400680:A:Grs28407189GPAVsACAN-0.065
162037081016:20370810:C:Trs9652588TPAVsPDILT-0.065
2251415382:25141538:A:Grs11676272GPAVsADCY30.065
213263855021:32638550:C:Trs2070418TPAVsTIAM1-0.065
1779675231:77967523:C:Trs12049202TIntronicAK50.065
41456590644:145659064:T:Crs11727676CPCVsHHIP0.064
91341050489:134105048:A:Grs28665311GPTVsNUP214-0.064
71485259047:148525904:C:Grs2302427GPAVsEZH20.064
106183129010:61831290:T:Crs28932171CPAVsANK30.063
1728357401:72835740:G:Ars2613504AOthers0.063
115463041:1546304:C:Trs11492279TOthersMIB2-0.063
114365653511:43656535:G:Ars2862961AIntronicHSD17B12-0.063
182112044418:21120444:T:Crs1805082CPAVsNPC1-0.063
185502733318:55027333:CG:Crs112792874CPTVsST8SIA3-0.062
114785725311:47857253:T:Crs3816605CPAVsNUP160-0.062
143329312214:33293122:A:Grs1051695GPAVsAKAP6-0.062
51535378935:153537893:G:Trs7715256TIntronicMFAP3-0.062
395173693:9517369:C:Trs11542009TPAVsSETD50.062

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 34357 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References