Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Trunk fat-free mass


Trunk fat-free mass iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI23129/INI23129.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23129/INI23129.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23129/INI23129.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23129/INI23129.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI23129/INI23129.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.717[0.713, 0.720]<1.0x10-300
white BritishGenotype-only modelR20.053[0.050, 0.057]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.770[0.767, 0.773]<1.0x10-300
Non-British whiteCovariate-only modelR20.709[0.692, 0.727]<1.0x10-300
Non-British whiteGenotype-only modelR20.070[0.052, 0.088]1.6x10-46
Non-British whiteFull model (covariates and genotypes)R20.768[0.753, 0.783]<1.0x10-300
South AsianCovariate-only modelR20.638[0.609, 0.668]1.9x10-308
South AsianGenotype-only modelR20.029[0.012, 0.045]7.9x10-11
South AsianFull model (covariates and genotypes)R20.684[0.658, 0.711]<1.0x10-300
AfricanCovariate-only modelR20.584[0.549, 0.620]6.0x10-224
AfricanGenotype-only modelR20.009[-0.002, 0.019]1.5x10-03
AfricanFull model (covariates and genotypes)R20.590[0.555, 0.625]2.2x10-227
OthersCovariate-only modelR20.711[0.700, 0.722]<1.0x10-300
OthersGenotype-only modelR20.041[0.032, 0.049]1.1x10-72
OthersFull model (covariates and genotypes)R20.752[0.743, 0.762]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI23129/INI23129.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 42468 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
6198394156:19839415:C:Trs41271299TIntronicID40.169
24171672:417167:T:Crs62106258COthersAC105393.2-0.160
149484494714:94844947:C:Trs28929474TPAVsSERPINA10.146
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-0.142
135072289513:50722895:C:Ars1326122AIntronicDLEU10.139
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.139
203402575620:34025756:A:Grs143384GUTRGDF50.133
158940068015:89400680:A:Grs28407189GPAVsACAN-0.133
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.126
2277309402:27730940:T:Crs1260326CPAVsGCKR0.121
81205960238:120596023:A:Grs10283100GPAVsENPP20.120
195587967219:55879672:C:Trs4252548TPAVsIL11-0.117
5828151705:82815170:A:Grs61749613GPAVsVCAN0.116
109603959710:96039597:G:Crs2274224CPAVsPLCE10.116
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.113
31855486833:185548683:G:Ars720390AOthers0.110
165380095416:53800954:T:Crs1421085CIntronicFTO0.109
146097653714:60976537:C:Ars33912345APAVsSIX6-0.107
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.102
4179706554:17970655:C:Trs6853216TIntronicLCORL-0.097
195599343619:55993436:G:Trs147110934TPAVsZNF628-0.094
125714606912:57146069:T:Grs2277339GPAVsPRIM1-0.090
12010162961:201016296:G:Ars3850625APAVsCACNA1S-0.088
11549913891:154991389:T:Crs905938CIntronicDCST20.086
31411060633:141106063:T:Crs7632381COthersZBTB380.084
1786236261:78623626:C:Trs17391694TOthers0.083
4180254844:18025484:G:Ars2011603AOthersLCORL-0.082
413415534:1341553:A:Grs111391498GPAVsUVSSA-0.080
2333595652:33359565:G:Ars116713089AUTRLTBP1-0.078
31721634493:172163449:G:Ars509035AIntronicGHSR0.077
11767940661:176794066:G:Ars1325596AIntronicPAPPA20.076
677200596:7720059:G:Ars12198986AOthers0.075
8777619198:77761919:C:Trs61729527TPAVsZFHX4-0.075
185783976918:57839769:C:Ars571312AOthers0.075
156745769815:67457698:A:Grs35874463GPAVsSMAD30.074
145092324914:50923249:C:Trs12881869TPAVsMAP4K5-0.073
51227333175:122733317:G:Ars7711753AIntronicCEP120-0.072
X78649193X:78649193:C:Trs1474563TOthers0.071
81356498488:135649848:G:Ars12541381APAVsZFAT-0.071
61303491196:130349119:C:Trs6569648TIntronicL3MBTL3-0.071
126624705112:66247051:C:Trs11834900TIntronicHMGA2, RP11-366L20.2-0.071
51682562405:168256240:G:Ars4282339AIntronicSLIT3-0.070
21724129072:172412907:A:Crs3821083CUTRCYBRD1-0.070
41455651164:145565116:G:Ars7680661AIntronicHHIP-AS10.069
51025372855:102537285:A:Grs36046591GPAVsPPIP5K2-0.069
158938665215:89386652:G:Ars34949187APAVsACAN-0.068
11281073111:2810731:C:Trs2237886TIntronicKCNQ10.067
X102529190X:102529190:C:Grs6621640GPAVsTCEAL5-0.067
221762591522:17625915:G:Ars35665085APAVsCECR5-0.067
224207037422:42070374:A:Crs41311445CUTRNHP2L1-0.067
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-0.066
1212482646212:124826462:C:Trs2229840TPAVsNCOR20.066
172923674517:29236745:G:Ars35958868AIntronicADAP2-0.066
159919489615:99194896:C:Grs2871865GIntronicIGF1R-0.066
112767991611:27679916:C:Trs6265TPAVsBDNF-0.065
12185964611:218596461:A:Grs6657275GIntronicTGFB20.065
11778894801:177889480:A:Grs543874GOthersSEC16B0.065
41459826254:145982625:G:Ars116662954AIntronicANAPC10-0.064
2202055412:20205541:C:Trs52826764TPAVsMATN3-0.064
19217076419:2170764:T:Crs2108524CIntronicDOT1L0.063
31413266023:141326602:T:Crs295322CPAVsRASA20.063
12336809312:3368093:G:Ars10491967AIntronicTSPAN90.063
6761645896:76164589:C:Ars12209223AIntronicFILIP10.063
168998614416:89986144:C:Trs1805008TPAVsMC1R, TUBB30.062
31719690773:171969077:C:Grs7652177GPAVsFNDC3B0.062
31290207783:129020778:A:Grs6765930GPAVsHMCES0.062
5774412995:77441299:C:Ars10755299AIntronicAP3B1-0.062
126634981212:66349812:A:Grs17179670GUTRHMGA2-0.062
71505545537:150554553:C:Trs1049742TPAVsAOC1-0.061
126635182612:66351826:T:Crs1351394CUTRHMGA2-0.061
10497644210:4976442:C:Ars7922153AIntronicAKR1C1-0.061
61426693386:142669338:A:Grs9496346GIntronicGPR126-0.060
31342002053:134200205:C:Trs1863913TIntronicANAPC130.060
12146222531:214622253:C:Trs10494977TIntronicPTPN14-0.060
6341657216:34165721:A:Grs7742369GOthers0.060
187498305518:74983055:A:Grs8097893GOthersGALR1-0.060
4543426584:54342658:G:Trs6855607TIntronicFIP1L1, LNX1-0.059
154198909115:41989091:C:Ars61736074APAVsMGA-0.059
22115405072:211540507:C:Ars1047891APAVsCPS10.059
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN10.059
125663697512:56636975:C:Grs59626664GPAVsANKRD520.059
6418776716:41877671:G:Ars114056237AIntronicMED20-0.059
127743982312:77439823:G:Crs61754233CPAVsE2F70.059
16219978816:2199788:T:Grs36232GIntronicRAB260.059
16226787716:2267877:G:Ars27345AOthersPGP0.059
31839761033:183976103:C:Trs11546878TPAVsECE2-0.059
185785176318:57851763:A:Grs10871777GOthers0.058
5428478665:42847866:C:Trs62372061TIntronicSEPP10.058
147043918514:70439185:C:Ars7152091AIntronicSMOC10.058
31854972933:185497293:C:Trs11706322TIntronicIGF2BP2-0.058
81356145538:135614553:G:Crs112892337CPAVsZFAT0.058
163003363316:30033633:T:Crs12325539CIntronicDOC2A0.058
61303412356:130341235:T:Crs113898003CIntronicL3MBTL3-0.057
5957288985:95728898:C:Grs6235GPAVsPCSK10.057
213967147621:39671476:G:Ars2230033APAVsKCNJ15-0.057
X38009121X:38009121:G:Ars35318931APAVsSRPX-0.057
121287109912:12871099:T:Grs2066827GPAVsCDKN1B-0.057
51226823345:122682334:C:Trs2303720TPAVsCEP120-0.057
672408766:7240876:G:Ars41302867AIntronicRREB1-0.057
17758005217:7580052:C:Trs8079544TIntronicTP530.056

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 42468 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References