Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: White blood cell (leukocyte) count


Leukocyte count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30000/INI30000.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30000/INI30000.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30000/INI30000.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30000/INI30000.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30000/INI30000.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.013[0.012, 0.015]7.7x10-196
white BritishGenotype-only modelR20.076[0.073, 0.080]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.089[0.085, 0.093]<1.0x10-300
Non-British whiteCovariate-only modelR20.018[0.008, 0.027]1.4x10-12
Non-British whiteGenotype-only modelR20.076[0.058, 0.095]2.5x10-50
Non-British whiteFull model (covariates and genotypes)R20.091[0.071, 0.111]3.2x10-60
South AsianCovariate-only modelR20.007[-0.001, 0.016]1.4x10-03
South AsianGenotype-only modelR20.090[0.062, 0.117]4.2x10-31
South AsianFull model (covariates and genotypes)R20.094[0.066, 0.122]2.0x10-32
AfricanCovariate-only modelR20.008[-0.002, 0.018]2.8x10-03
AfricanGenotype-only modelR20.044[0.022, 0.067]5.4x10-13
AfricanFull model (covariates and genotypes)R20.051[0.027, 0.075]9.2x10-15
OthersCovariate-only modelR20.028[0.021, 0.035]2.4x10-49
OthersGenotype-only modelR20.082[0.071, 0.094]6.8x10-147
OthersFull model (covariates and genotypes)R20.098[0.086, 0.111]2.7x10-176

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30000/INI30000.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 17890 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
11591746831:159174683:T:Crs2814778CUTRDARC-0.576
11591754941:159175494:C:Trs34599082TPAVsDARC-0.172
22189999822:218999982:G:Ars55799208APAVsCXCR2-0.150
7924083707:92408370:C:Trs445TIntronicCDK6-0.120
194415310019:44153100:A:Grs4760GPAVsPLAUR-0.098
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.093
132862304813:28623048:T:Crs79490353CIntronicFLT30.076
173816687917:38166879:T:Crs8078723COthersCSF30.069
61354190186:135419018:T:Crs9399137CIntronicHBS1L-0.058
7450040637:45004063:T:Crs7792760CPAVsMYO1G0.057
12361072411:236107241:A:Crs6429432COthersRP5-940F7.2-0.057
11143775681:114377568:A:Grs2476601GPAVsPTPN220.055
142545948214:25459482:T:Crs2332462CIntronicSTXBP60.051
194574077119:45740771:C:Trs17356664TIntronicMARK4-0.049
629911349HLA-A*0101HLA-A*0101+PAVsHLA-A-0.048
7287150567:28715056:A:Grs16874653GIntronicCREB50.048
154226178115:42261781:G:Ars1002774AIntronicEHD4-0.047
4749630494:74963049:C:Trs9131TUTRCXCL2-0.046
21823193012:182319301:C:Trs1449263TOthersITGA40.046
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.045
51732042105:173204210:A:Grs812618GOthers-0.043
8229744508:22974450:T:Crs9644063CPAVsTNFRSF10C-0.042
7282792437:28279243:G:Ars4722771AIntronicJAZF1-AS10.040
1369455591:36945559:G:Ars3917925AIntronicCSF3R-0.040
17774260117:7742601:G:Ars74480102AOthersKDM6B-0.039
107352063210:73520632:A:Crs3747869CPAVsC10orf540.038
17200182517:2001825:T:Crs7225843CIntronicSMG6, RP11-667K14.5-0.038
173814354817:38143548:C:Trs4065321TIntronicPSMD3-0.038
175635650217:56356502:A:Grs56378716GPAVsMPO0.037
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.037
7922361647:92236164:T:Crs8179CUTRCDK6-0.037
132862429413:28624294:G:Ars1933437APAVsFLT30.036
104488145510:44881455:G:Ars2839686AOthersCXCL12-0.035
4577974144:57797414:C:Trs3796529TPAVsREST-0.035
3122676483:12267648:A:Grs7616006GOthers-0.035
21697074282:169707428:C:Trs540652TPAVsNOSTRIN-0.035
156463488415:64634884:C:Ars6494475APAVsCTD-2116N17.10.035
9866172659:86617265:A:Grs1982151GPAVsRMI10.034
1111395814211:113958142:GT:Grs35092495GIntronicZBTB160.034
632605398HLA-DQA1*0301HLA-DQA1*0301+PAVsHLA-DQA10.034
31412068003:141206800:C:Trs9819371TIntronicRASA2-0.034
91361493999:136149399:G:Ars507666AIntronicABO-0.034
173802863317:38028633:AG:Ars1484577410APTVsZPBP2-0.034
4553941724:55394172:C:Trs218237TOthers0.034
1369417511:36941751:A:Grs3917950GOthersCSF3R-0.033
1661664991:66166499:T:Crs7524581COthers0.033
21607290052:160729005:C:Trs1397706TPAVsLY75, LY75-CD3020.033
8616601638:61660163:A:Grs11775560GIntronicCHD70.033
81423262688:142326268:A:Grs13278983GOthers-0.031
7287234077:28723407:G:Ars886816AIntronicCREB50.031
4835625694:83562569:A:Grs6535363GIntronicSCD5-0.030
21138445532:113844553:T:Crs6731551COthersRNU6-1180P0.029
51482064735:148206473:G:Crs1042714CPAVsADRB2-0.029
168458176816:84581768:C:Trs247832TIntronicTLDC10.029
512823195:1282319:C:Ars7726159AIntronicTERT0.029
4726183234:72618323:G:Trs4588TPAVsGC-0.029
194275634519:42756345:T:Crs4141062CIntronicAC006486.9, ERF0.028
61530430356:153043035:G:Ars17710008APAVsMYCT10.028
177270094317:72700943:A:Grs35489971GPAVsCD300LF0.028
102521824310:25218243:G:Trs10828725TIntronicPRTFDC1-0.028
1510171892715:101718927:G:Ars3743193APAVsCHSY10.028
1111398687911:113986879:A:Grs238910GIntronicZBTB160.027
12246390831:224639083:C:Ars867362AIntronicCNIH3-0.027
149351646514:93516465:T:Crs2180369CIntronicITPK10.027
6707335476:70733547:C:Grs2273426GPAVsCOL19A10.027
187407107818:74071078:T:Crs3177609CUTRZNF516-0.026
61356928476:135692847:G:Trs2614287TIntronicAHI10.026
191034969019:10349690:T:Crs8113091COthers-0.026
1130314811:303148:A:Grs7102856GOthersIFITM2, IFITM50.026
12650213112:6502131:T:Grs2364482GOthersRP1-102E24.80.026
41062685944:106268594:A:Grs2647264GOthers0.026
7503044617:50304461:C:Trs1456896TOthers0.026
4749480544:74948054:A:Crs1371794COthersRP11-629B11.4-0.026
632605398HLA-DQA1*0102HLA-DQA1*0102+PAVsHLA-DQA1-0.025
109911690310:99116903:C:Trs1048445TPAVsRRP120.025
1112249989511:122499895:A:Grs11607161GOthers0.025
3277570183:27757018:G:Trs2371108TOthersEOMES, RP11-222K16.20.025
22377807272:237780727:T:Crs4074882COthers0.025
12476015951:247601595:T:Crs12239046CIntronicNLRP30.024
7287144277:28714427:T:Crs41344CIntronicCREB50.024
31283362213:128336221:A:Crs2712429COthersRPN1-0.024
3393071623:39307162:G:Ars3732378APAVsCX3CR10.024
1130561911:305619:T:Crs6421984COthersIFITM2, RP11-326C3.40.024
11012358411:101235841:A:Grs1409423GOthers0.024
47061014:706101:A:Grs4690293GIntronicPCGF30.024
9219868479:21986847:T:Ars3731211AIntronicRP11-145E5.5, CDKN2A0.024
11560996691:156099669:T:Grs513043GPAVsLMNA-0.024
6312630516:31263051:A:Grs2853926GIntronicXXbac-BPG248L24.130.024
925834399:2583439:A:Grs4741738GIntronicRP11-125B21.20.024
7288385667:28838566:T:Crs4722855CIntronicCREB50.024
71343882557:134388255:A:Grs2347698GOthers-0.024
128895148512:88951485:C:Trs1472899TIntronicKITLG-0.024
109603959710:96039597:G:Crs2274224CPAVsPLCE1-0.024
4363311004:36331100:A:Grs9306932GIntronicDTHD1, RP11-431M7.20.024
1464765871:46476587:T:Grs11211247GPAVsMAST2-0.024
126974401412:69744014:C:Ars1800973APAVsLYZ0.024
22115405072:211540507:C:Ars1047891APAVsCPS1-0.023
81305863558:130586355:C:Trs12677963TIntronicCCDC260.023
12480394511:248039451:C:Trs3811444TPAVsTRIM580.023
41450564874:145056487:C:Trs13103731TIntronicGYPA, GYPB0.023

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 17890 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References