Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Red blood cell (erythrocyte) count


Erythrocyte count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30010/INI30010.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30010/INI30010.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30010/INI30010.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30010/INI30010.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30010/INI30010.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.265[0.260, 0.271]<1.0x10-300
white BritishGenotype-only modelR20.118[0.113, 0.122]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.382[0.376, 0.388]<1.0x10-300
Non-British whiteCovariate-only modelR20.296[0.268, 0.324]1.2x10-216
Non-British whiteGenotype-only modelR20.093[0.073, 0.113]1.7x10-61
Non-British whiteFull model (covariates and genotypes)R20.389[0.362, 0.417]3.3x10-303
South AsianCovariate-only modelR20.277[0.238, 0.315]1.1x10-102
South AsianGenotype-only modelR20.075[0.049, 0.101]4.8x10-26
South AsianFull model (covariates and genotypes)R20.353[0.314, 0.392]3.2x10-137
AfricanCovariate-only modelR20.259[0.217, 0.302]3.7x10-77
AfricanGenotype-only modelR20.041[0.020, 0.063]2.8x10-12
AfricanFull model (covariates and genotypes)R20.295[0.252, 0.338]1.9x10-89
OthersCovariate-only modelR20.311[0.294, 0.327]<1.0x10-300
OthersGenotype-only modelR20.101[0.089, 0.114]3.5x10-182
OthersFull model (covariates and genotypes)R20.388[0.371, 0.405]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30010/INI30010.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 27293 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
X153763492X:153763492:T:Crs1050829CPAVsG6PD-0.033
61354190186:135419018:T:Crs9399137CIntronicHBS1L-0.033
193375454819:33754548:C:Trs78744187TOthers0.031
71002754447:100275444:G:Ars62482253APAVsGNB2-0.024
61354186356:135418635:C:Trs7775698TIntronicHBS1L-0.021
71514150417:151415041:A:Grs10224002GIntronicPRKAG2-0.018
4553941724:55394172:C:Trs218237TOthers-0.017
91361311889:136131188:C:Trs8176749TOthersABO0.017
107109339210:71093392:C:Trs16926246TIntronicHK10.017
4554077624:55407762:C:Grs172629GOthers-0.016
2463531662:46353166:A:Grs10495928GIntronicPRKCE-0.016
61398425996:139842599:G:Trs653513TOthers0.015
12480394511:248039451:C:Trs3811444TPAVsTRIM580.014
91361310229:136131022:C:Trs8176751TOthersABO0.014
21122785392:112278539:G:Ars61033544AOthers-0.013
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.20.013
71002402967:100240296:A:Grs2075672GIntronicTFR2-0.013
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.013
12433247812:4332478:C:Trs10849023TOthers-0.012
21121679312:112167931:T:Crs62160676CIntronicMIR4435-1HG-0.012
6439411376:43941137:T:Crs17287978COthers-0.012
31959213113:195921311:G:Ars9325434AOthersZDHHC190.012
191299945819:12999458:C:Trs8110787TOthersKLF1, GCDH-0.012
6419251596:41925159:G:Ars9349205AIntronicCCND30.011
61398406936:139840693:A:Crs592423COthers0.011
163010316016:30103160:C:Ars3809627AUTRTBX60.011
91361538759:136153875:C:Trs651007TOthersABO-0.011
194130665019:41306650:C:Trs61750953TPAVsEGLN2-0.011
168885372916:88853729:C:Trs837763TOthersPIEZO1-0.011
204304236420:43042364:C:Trs1800961TPAVsHNF4A0.011
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.010
31422953683:142295368:C:Ars6782400AIntronicATR0.010
631238217HLA-C*0501HLA-C*0501+PAVsHLA-C-0.010
5881258535:88125853:T:Grs304151GIntronicMEF2C-0.010
948568779:4856877:G:Ars10758658AIntronicRCL10.010
11985447301:198544730:C:Ars12742531AOthers-0.010
7504284457:50428445:T:Crs12718598CIntronicIKZF1-0.010
71003616757:100361675:G:Ars2293767APAVsZAN0.010
137605279013:76052790:G:Ars9565165AIntronicTBC1D40.010
11551787821:155178782:A:Trs760077TPAVsMTX10.010
11549651131:154965113:G:Trs7535144TPAVsFLAD1-0.010
186092085418:60920854:C:Trs17758695TIntronicBCL2-0.009
157629813215:76298132:A:Grs4886755GPCVsNRG4-0.009
3567712513:56771251:A:Crs3772219CPAVsARHGEF3-0.009
177612186417:76121864:A:Grs2748427GPAVsTMC60.009
175945658917:59456589:C:Trs9895661TOthersBCAS3-0.009
1617441016:174410:A:Grs13331107GIntronicNPRL3-0.009
113075483711:30754837:G:Ars55733296AOthers-0.009
193374481619:33744816:G:Ars11670517AOthers0.009
224636416122:46364161:G:Ars9330813AIntronicWNT7B0.009
21208480492:120848049:C:Trs28930677TPAVsEPB41L50.009
1464934601:46493460:T:Grs1707336GPAVsMAST2-0.009
21121434132:112143413:T:Crs2139376CIntronicMIR4435-1HG-0.009
145092324914:50923249:C:Trs12881869TPAVsMAP4K5-0.009
8218666628:21866662:T:Crs10503716COthersXPO7-0.009
6419052756:41905275:G:Ars3218097AIntronicCCND30.008
61096167626:109616762:A:Grs9400272GOthersCCDC162P-0.008
11989749041:198974904:C:Trs10919615TOthersRP11-16L9.3-0.008
1212116351812:121163518:C:Ars2239760AOthersRP11-173P15.5, ACADS0.008
205759797020:57597970:A:Crs463312CPAVsTUBB10.008
6438015826:43801582:C:Trs12660375TOthers-0.008
211633917221:16339172:G:Crs2229742CPAVsNRIP1-0.008
12314885241:231488524:C:Trs2437150TPAVsSPRTN0.008
61095620356:109562035:A:Grs11964178GIntronicC6orf183-0.008
3169291093:16929109:T:Crs6788010CIntronicPLCL20.008
2606216432:60621643:G:Trs243067TOthersAC007381.2-0.008
6438066096:43806609:G:Ars881858AOthers0.008
8234236698:23423669:A:Grs2942194GPAVsSLC25A37-0.008
91007401249:100740124:C:Trs4743150TOthers0.008
184383370118:43833701:T:TCTGrs34068795TCTGPAVsC18orf250.008
21139729452:113972945:A:Grs752590GIntronicPAX8-AS10.008
2463155162:46315516:C:Grs71422190GIntronicPRKCE-0.007
X8916646X:8916646:A:Crs17307280COthers0.007
11985686651:198568665:G:Ars16843417AOthersRP11-553K8.2-0.007
116160034211:61600342:A:Crs174574CIntronicFADS2-0.007
205598980820:55989808:C:Trs99595TOthers-0.007
31958095643:195809564:A:Grs6583288GOthersTFRC0.007
193374195119:33741951:A:Grs34635674GOthers0.007
3243508113:24350811:A:Grs9310736GIntronicTHRB-0.007
168858169016:88581690:A:Grs12444980GIntronicRP11-21B21.4, ZFPM10.007
184620726818:46207268:G:Ars78415359AIntronicCTIF, RP11-426J5.2-0.007
125379045012:53790450:T:Crs7300593CIntronicSP10.007
61354152086:135415208:G:Ars2210366AIntronicHBS1L0.007
16430691716:4306917:C:Trs73503276TOthersRP11-95P2.1-0.007
6419253046:41925304:G:Ars11968166AIntronicCCND3-0.007
3169175533:16917553:A:Grs12485389GIntronicPLCL20.007
124851228512:48512285:C:Ars4760682APAVsPFKM-0.007
12141801181:214180118:G:Ars726334AIntronicPROX10.007
71507613147:150761314:G:Ars2303929APAVsSLC4A20.007
6419899896:41989989:C:Trs10948005TIntronicCCND3-0.007
4553943234:55394323:A:Grs10488853GOthers-0.007
194132836519:41328365:C:Trs11879672TIntronicCYP2F2P, CTC-490E21.12-0.007
11472825081:147282508:C:Trs11240129TOthers0.007
161625959616:16259596:G:Ars41278174APAVsABCC60.007
156586391715:65863917:A:Crs2279854CPAVsPTPLAD10.007
1617032816:170328:C:Trs2238368TIntronicNPRL30.007
146470359314:64703593:G:Trs1256061TIntronicESR2-0.007
104600363110:46003631:A:Crs12773463CIntronicMARCH8-0.007
6260911796:26091179:C:Grs1799945GPAVsHFE-0.006
225097126622:50971266:T:Crs140522COthersTYMP, ODF3B-0.006

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 27293 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References