Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Hemoglobin concentration


Hemoglobin conc. iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30020/INI30020.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30020/INI30020.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30020/INI30020.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30020/INI30020.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30020/INI30020.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.369[0.363, 0.375]<1.0x10-300
white BritishGenotype-only modelR20.068[0.065, 0.072]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.438[0.432, 0.443]<1.0x10-300
Non-British whiteCovariate-only modelR20.399[0.371, 0.427]1.9x10-308
Non-British whiteGenotype-only modelR20.063[0.046, 0.080]1.7x10-41
Non-British whiteFull model (covariates and genotypes)R20.465[0.438, 0.491]<1.0x10-300
South AsianCovariate-only modelR20.397[0.359, 0.436]2.5x10-159
South AsianGenotype-only modelR20.029[0.012, 0.045]1.1x10-10
South AsianFull model (covariates and genotypes)R20.430[0.392, 0.468]9.7x10-177
AfricanCovariate-only modelR20.394[0.352, 0.437]1.2x10-127
AfricanGenotype-only modelR20.018[0.003, 0.032]6.2x10-06
AfricanFull model (covariates and genotypes)R20.401[0.359, 0.444]2.0x10-130
OthersCovariate-only modelR20.393[0.376, 0.410]<1.0x10-300
OthersGenotype-only modelR20.048[0.039, 0.057]3.0x10-85
OthersFull model (covariates and genotypes)R20.435[0.419, 0.452]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30020/INI30020.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 21078 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
6259182256:25918225:T:Crs80215559CIntronicSLC17A20.110
71002754447:100275444:G:Ars62482253APAVsGNB2-0.096
6260911796:26091179:C:Grs1799945GPAVsHFE0.095
107109339210:71093392:C:Trs16926246TIntronicHK10.070
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.061
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.051
71514150417:151415041:A:Grs10224002GIntronicPRKAG2-0.050
91361310229:136131022:C:Trs8176751TOthersABO0.048
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.047
2463531662:46353166:A:Grs10495928GIntronicPRKCE-0.046
194130665019:41306650:C:Trs61750953TPAVsEGLN2-0.046
61354190186:135419018:T:Crs9399137CIntronicHBS1L-0.040
107109991310:71099913:T:Crs7072268CIntronicHK10.040
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.037
168885372916:88853729:C:Trs837763TOthersPIEZO1-0.036
91361538759:136153875:C:Trs651007TOthersABO-0.033
6439411376:43941137:T:Crs17287978COthers-0.032
12036518241:203651824:C:Trs11240734TIntronicATP2B4-0.032
11551787821:155178782:A:Trs760077TPAVsMTX10.031
107111284310:71112843:G:Trs10998738TIntronicHK1-0.030
12141801181:214180118:G:Ars726334AIntronicPROX10.030
124851228512:48512285:C:Ars4760682APAVsPFKM-0.030
204304236420:43042364:C:Trs1800961TPAVsHNF4A0.028
11549651131:154965113:G:Trs7535144TPAVsFLAD1-0.027
175945658917:59456589:C:Trs9895661TOthersBCAS3-0.026
113075483711:30754837:G:Ars55733296AOthers-0.025
157629813215:76298132:A:Grs4886755GPCVsNRG4-0.025
157623298215:76232982:C:Trs2648437TIntronicNRG4-0.024
3567712513:56771251:A:Crs3772219CPAVsARHGEF3-0.024
2463155162:46315516:C:Grs71422190GIntronicPRKCE-0.024
4553941724:55394172:C:Trs218237TOthers-0.023
71002186317:100218631:C:Trs41295942TPAVsTFR20.023
194138168319:41381683:G:Trs58682606TPTVsCYP2A7-0.022
224432472722:44324727:C:Grs738409GPAVsPNPLA30.022
91306229469:130622946:T:Crs4837197COthers-0.022
12480394511:248039451:C:Trs3811444TPAVsTRIM580.021
21208480492:120848049:C:Trs28930677TPAVsEPB41L50.021
174392407317:43924073:T:Crs12373123CPAVsSPPL2C0.020
224636416122:46364161:G:Ars9330813AIntronicWNT7B0.020
194132836519:41328365:C:Trs11879672TIntronicCYP2F2P, CTC-490E21.12-0.020
21139729452:113972945:A:Grs752590GIntronicPAX8-AS10.020
4237365234:23736523:A:Grs16874052GIntronicRP11-380P13.10.020
11472825081:147282508:C:Trs11240129TOthers0.019
6438066096:43806609:G:Ars881858AOthers0.019
6258429516:25842951:T:Grs1408272GIntronicSLC17A30.019
155872342615:58723426:A:Grs1077835GIntronicLIPC, ALDH1A2-0.019
81451129838:145112983:C:Trs55916375TPAVsOPLAH0.018
1980744219:807442:G:Crs123698COthersPTBP10.018
12314885241:231488524:C:Trs2437150TPAVsSPRTN0.018
205759797020:57597970:A:Crs463312CPAVsTUBB10.018
174230464417:42304644:G:Ars7222349AOthersRP5-882C2.2, SHC1P20.018
211679541821:16795418:C:Trs2823271TOthers-0.018
6437363896:43736389:A:Crs699947COthersVEGFA-0.018
12251835212:2518352:T:Crs4765929CIntronicCACNA1C0.018
6438015826:43801582:C:Trs12660375TOthers-0.018
1293200131:29320013:G:Ars111642750APAVsEPB410.018
2463060402:46306040:G:Ars113797384AIntronicPRKCE-0.018
6162907616:16290761:T:Ars1042391APAVsGMPR-0.018
71003616757:100361675:G:Ars2293767APAVsZAN0.018
167214417416:72144174:T:Crs9302635CIntronicDHX38-0.017
113074909011:30749090:T:Crs963837COthers0.017
2463590792:46359079:A:Grs17034610GIntronicPRKCE-0.017
146470359314:64703593:G:Trs1256061TIntronicESR2-0.017
211633917221:16339172:G:Crs2229742CPAVsNRIP1-0.017
963566579:6356657:C:Trs7021445TOthers0.017
91361392659:136139265:C:Ars657152AIntronicABO-0.017
161625959616:16259596:G:Ars41278174APAVsABCC60.017
132923058113:29230581:A:Grs1340817GOthersPOMP-0.016
223750725022:37507250:A:Grs228924GOthersTMPRSS6-0.016
71002778687:100277868:G:Ars56148928AUTRGIGYF1-0.016
X8913826X:8913826:T:Crs5934505COthers0.016
153332451915:33324519:T:Crs17816699CIntronicFMN10.016
1311454901513:114549015:T:Crs6602910CIntronicGAS60.016
71509303637:150930363:C:Trs73169668TUTRCHPF2-0.016
163010316016:30103160:C:Ars3809627AUTRTBX60.015
111017444711:10174447:C:Trs7129531TIntronicRP11-748C4.1, SBF2-0.015
167211400216:72114002:C:Trs217181TIntronicTXNL4B-0.015
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.015
213535876221:35358762:G:Ars2834322AOthers-0.015
71296634967:129663496:C:Trs11556924TPAVsZC3HC1-0.015
631238217HLA-C*0501HLA-C*0501+PAVsHLA-C-0.015
2440171882:44017188:T:Crs3792020CIntronicDYNC2LI10.015
61267641906:126764190:T:Grs9385400GOthers-0.015
184620726818:46207268:G:Ars78415359AIntronicCTIF, RP11-426J5.2-0.015
51540598455:154059845:G:Ars13179754AOthers0.015
143615882814:36158828:T:Crs7155504COthersRALGAPA1-0.015
8415436758:41543675:G:Ars34664882APAVsANK10.015
620390446:2039044:T:Crs9503077CIntronicGMDS0.015
4774103184:77410318:C:Ars4859682AIntronicSHROOM30.015
19217076419:2170764:T:Crs2108524CIntronicDOT1L0.015
108169786810:81697868:A:Trs3088308TPAVsSFTPD-0.015
193375454819:33754548:C:Trs78744187TOthers0.015
1464934601:46493460:T:Grs1707336GPAVsMAST2-0.014
125784371112:57843711:G:Ars2229357APAVsINHBC0.014
173787958817:37879588:A:Grs1136201GPAVsERBB2-0.014
101693248810:16932488:T:TAAffx-89016412TAPTVsCUBN0.014
1211192773912:111927739:G:Ars7134740AIntronicATXN2-0.014
185532250218:55322502:C:Trs12968116TPAVsATP8B1-0.014
6311065016:31106501:C:CCAffx-89026413CCPTVsPSORS1C1-0.014
6437588736:43758873:G:Ars6905288AOthersVEGFA0.014

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 21078 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References