Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Mean corpuscular volume


Mean corpuscular vol. iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30040/INI30040.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30040/INI30040.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30040/INI30040.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30040/INI30040.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30040/INI30040.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.018[0.016, 0.020]4.4x10-264
white BritishGenotype-only modelR20.200[0.194, 0.205]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.215[0.209, 0.220]<1.0x10-300
Non-British whiteCovariate-only modelR20.026[0.015, 0.038]4.4x10-18
Non-British whiteGenotype-only modelR20.196[0.170, 0.222]1.4x10-135
Non-British whiteFull model (covariates and genotypes)R20.219[0.192, 0.245]9.7x10-153
South AsianCovariate-only modelR20.037[0.018, 0.056]2.3x10-13
South AsianGenotype-only modelR20.101[0.072, 0.130]6.5x10-35
South AsianFull model (covariates and genotypes)R20.131[0.099, 0.163]1.3x10-45
AfricanCovariate-only modelR20.023[0.006, 0.039]2.6x10-07
AfricanGenotype-only modelR20.058[0.033, 0.084]9.6x10-17
AfricanFull model (covariates and genotypes)R20.075[0.047, 0.104]2.3x10-21
OthersCovariate-only modelR20.076[0.065, 0.087]2.3x10-135
OthersGenotype-only modelR20.141[0.127, 0.155]7.8x10-258
OthersFull model (covariates and genotypes)R20.188[0.173, 0.204]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30040/INI30040.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 21818 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
6259182256:25918225:T:Crs80215559CIntronicSLC17A20.875
6260911796:26091179:C:Grs1799945GPAVsHFE0.619
1626033616:260336:C:Ars112148649AIntronicLUC7L-0.509
X153763492X:153763492:T:Crs1050829CPAVsG6PD0.412
11586377281:158637728:T:Crs148912436CPAVsSPTA1-0.398
61398425996:139842599:G:Trs653513TOthers-0.390
4553941724:55394172:C:Trs218237TOthers0.381
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.376
193375454819:33754548:C:Trs78744187TOthers-0.373
61354190186:135419018:T:Crs9399137CIntronicHBS1L0.309
61398406936:139840693:A:Crs592423COthers-0.296
6419251596:41925159:G:Ars9349205AIntronicCCND3-0.292
61354186356:135418635:C:Trs7775698TIntronicHBS1L0.291
11985430271:198543027:C:Trs16843346TOthers0.285
91361311889:136131188:C:Trs8176749TOthersABO-0.267
6162908486:16290848:T:TACrs147049568TACPTVsGMPR0.265
1617441016:174410:A:Grs13331107GIntronicNPRL30.242
31959213113:195921311:G:Ars9325434AOthersZDHHC19-0.239
71002402967:100240296:A:Grs2075672GIntronicTFR20.236
948568779:4856877:G:Ars10758658AIntronicRCL1-0.228
6420104206:42010420:C:Grs12200388GIntronicCCND3-0.220
31422953683:142295368:C:Ars6782400AIntronicATR-0.211
7504284457:50428445:T:Crs12718598CIntronicIKZF10.210
12480394511:248039451:C:Trs3811444TPAVsTRIM58-0.195
21121679312:112167931:T:Crs62160676CIntronicMIR4435-1HG0.192
191299945819:12999458:C:Trs8110787TOthersKLF1, GCDH0.191
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.2-0.189
205598980820:55989808:C:Trs99595TOthers0.181
186092085418:60920854:C:Trs17758695TIntronicBCL20.180
71002186317:100218631:C:Trs41295942TPAVsTFR20.174
104596642210:45966422:G:Ars901683AIntronicMARCH80.173
1617032816:170328:C:Trs2238368TIntronicNPRL3-0.168
104611189510:46111895:G:Ars74436700APAVsZFAND40.168
191297560819:12975608:T:Crs7256794CPAVsMAST1-0.166
61096167626:109616762:A:Grs9400272GOthersCCDC162P0.164
6419212416:41921241:G:Trs10947997TIntronicCCND30.161
223750984422:37509844:T:Crs228928COthersTMPRSS6-0.157
106497415610:64974156:T:Crs41274072CPAVsJMJD1C-0.156
225097126622:50971266:T:Crs140522COthersTYMP, ODF3B0.153
21122785392:112278539:G:Ars61033544AOthers0.149
177612186417:76121864:A:Grs2748427GPAVsTMC6-0.149
6419252906:41925290:T:Ars11970772AIntronicCCND30.147
8416304058:41630405:G:Ars4737009AIntronicANK10.147
2606124572:60612457:C:Ars2137283AIntronicAC007381.20.146
3243508113:24350811:A:Grs9310736GIntronicTHRB0.144
184383370118:43833701:T:TCTGrs34068795TCTGPAVsC18orf25-0.144
8218666628:21866662:T:Crs10503716COthersXPO70.142
8415436758:41543675:G:Ars34664882APAVsANK1-0.142
11182542091:118254209:A:Grs11580552GOthers0.139
6420371676:42037167:C:Trs12194513TIntronicTAF80.138
1624089516:240895:A:Grs1203956GIntronicLUC7L0.137
31322261003:132226100:A:Grs79953286GPAVsDNAJC13-0.136
91007401249:100740124:C:Trs4743150TOthers-0.132
125714606912:57146069:T:Grs2277339GPAVsPRIM10.132
12433247812:4332478:C:Trs10849023TOthers0.130
193374481619:33744816:G:Ars11670517AOthers-0.130
1212116351812:121163518:C:Ars2239760AOthersRP11-173P15.5, ACADS-0.127
223287519022:32875190:G:Ars11107APTVsFBXO7-0.126
6418776716:41877671:G:Ars114056237AIntronicMED200.125
61354152086:135415208:G:Ars2210366AIntronicHBS1L-0.124
31957960493:195796049:G:Trs4927866TIntronicTFRC-0.119
19436621919:4366219:A:Grs732716GIntronicSH3GL1-0.118
6162907616:16290761:T:Ars1042391APAVsGMPR-0.118
107109988810:71099888:G:Ars10159477AIntronicHK10.118
137605279013:76052790:G:Ars9565165AIntronicTBC1D4-0.118
21121434132:112143413:T:Crs2139376CIntronicMIR4435-1HG0.117
163010316016:30103160:C:Ars3809627AUTRTBX6-0.116
11585804771:158580477:A:Grs12128171GOthersSPTA1, OR10Z1-0.116
11989749041:198974904:C:Trs10919615TOthersRP11-16L9.30.116
184383411818:43834118:A:Grs12605945GIntronicC18orf25-0.115
91401179689:140117968:A:Grs73565707GOthersC9orf169, RNF224, RNF2080.114
111923957911:19239579:G:Ars4757773AIntronicRP11-428C19.40.114
223746292622:37462926:G:Ars2235321APCVsTMPRSS60.114
511049385:1104938:C:Trs35188965TIntronicSLC12A70.113
171992683617:19926836:A:Grs7218708GIntronicSPECC10.113
1624788816:247888:A:Grs3918352GIntronicLUC7L0.113
125375783112:53757831:A:Grs12582170GOthers0.110
3169175533:16917553:A:Grs12485389GIntronicPLCL2-0.109
213512629721:35126297:G:Ars2834257AIntronicITSN1, AP000304.12-0.108
168788649016:87886490:C:Trs68149176TIntronicSLC7A50.108
287502662:8750266:A:Grs3856447GIntronicAC011747.60.107
6419155196:41915519:G:Ars6934551AIntronicCCND30.106
142349504814:23495048:T:Crs941718CIntronicPSMB5-0.104
1255836101:25583610:C:Grs72660908GIntronicC1orf63-0.104
1630915516:309155:C:Ars1122794AIntronicITFG30.104
172718294417:27182944:G:Ars9895443AIntronicERAL1-0.102
223746727022:37467270:C:Trs5756504TIntronicTMPRSS6-0.102
3169291093:16929109:T:Crs6788010CIntronicPLCL2-0.101
16430691716:4306917:C:Trs73503276TOthersRP11-95P2.10.101
11232001311:2320013:C:Trs16928078TIntronicC11orf210.101
146547894814:65478948:T:Grs2296322GOthersFNTB0.101
61114973796:111497379:G:Ars395564AIntronicSLC16A10-0.100
61095620356:109562035:A:Grs11964178GIntronicC6orf1830.098
512871945:1287194:G:Ars2853677AIntronicTERT0.097
6418480616:41848061:C:Trs34718512TIntronicUSP49-0.097
61354313186:135431318:T:Crs6920211COthers0.096
752316287:5231628:G:Ars6463311AIntronicWIPI2-0.096
11149892111:114989211:T:Grs2143583GIntronicTRIM330.096
113391356811:33913568:T:Crs2273799CUTRLMO20.096
1110834408111:108344081:G:Ars7943203AUTRKDELC2-0.095

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 21818 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References