Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Mean corpuscular hemoglobin


Mean corpuscular hemoglobin iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30050/INI30050.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30050/INI30050.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30050/INI30050.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30050/INI30050.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30050/INI30050.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.020[0.018, 0.022]4.7x10-292
white BritishGenotype-only modelR20.167[0.162, 0.172]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.184[0.179, 0.190]<1.0x10-300
Non-British whiteCovariate-only modelR20.028[0.016, 0.040]4.5x10-19
Non-British whiteGenotype-only modelR20.183[0.158, 0.209]1.2x10-125
Non-British whiteFull model (covariates and genotypes)R20.205[0.179, 0.231]4.3x10-142
South AsianCovariate-only modelR20.034[0.016, 0.052]2.1x10-12
South AsianGenotype-only modelR20.086[0.059, 0.114]6.3x10-30
South AsianFull model (covariates and genotypes)R20.116[0.085, 0.146]3.5x10-40
AfricanCovariate-only modelR20.022[0.005, 0.038]5.3x10-07
AfricanGenotype-only modelR20.055[0.030, 0.079]8.5x10-16
AfricanFull model (covariates and genotypes)R20.072[0.044, 0.100]1.9x10-20
OthersCovariate-only modelR20.083[0.071, 0.094]6.2x10-147
OthersGenotype-only modelR20.128[0.114, 0.141]7.3x10-232
OthersFull model (covariates and genotypes)R20.174[0.159, 0.189]1.9x10-308

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30050/INI30050.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 17127 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
6259182256:25918225:T:Crs80215559CIntronicSLC17A20.412
6260911796:26091179:C:Grs1799945GPAVsHFE0.286
1626033616:260336:C:Ars112148649AIntronicLUC7L-0.196
6162908486:16290848:T:TACrs147049568TACPTVsGMPR0.150
4553941724:55394172:C:Trs218237TOthers0.143
193375454819:33754548:C:Trs78744187TOthers-0.134
61354190186:135419018:T:Crs9399137CIntronicHBS1L0.132
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.132
61354186356:135418635:C:Trs7775698TIntronicHBS1L0.129
61398425996:139842599:G:Trs653513TOthers-0.118
71002402967:100240296:A:Grs2075672GIntronicTFR20.115
6419251596:41925159:G:Ars9349205AIntronicCCND3-0.110
1617441016:174410:A:Grs13331107GIntronicNPRL30.108
31959213113:195921311:G:Ars9325434AOthersZDHHC19-0.097
61398406936:139840693:A:Crs592423COthers-0.096
11985430271:198543027:C:Trs16843346TOthers0.090
71002186317:100218631:C:Trs41295942TPAVsTFR20.084
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.2-0.074
191299945819:12999458:C:Trs8110787TOthersKLF1, GCDH0.073
1617032816:170328:C:Trs2238368TIntronicNPRL3-0.071
61096167626:109616762:A:Grs9400272GOthersCCDC162P0.069
7504284457:50428445:T:Crs12718598CIntronicIKZF10.068
104611189510:46111895:G:Ars74436700APAVsZFAND40.067
184383370118:43833701:T:TCTGrs34068795TCTGPAVsC18orf25-0.067
21121679312:112167931:T:Crs62160676CIntronicMIR4435-1HG0.067
6420104206:42010420:C:Grs12200388GIntronicCCND3-0.065
223750984422:37509844:T:Crs228928COthersTMPRSS6-0.064
948568779:4856877:G:Ars10758658AIntronicRCL1-0.064
186092085418:60920854:C:Trs17758695TIntronicBCL20.063
106497415610:64974156:T:Crs41274072CPAVsJMJD1C-0.063
1624089516:240895:A:Grs1203956GIntronicLUC7L0.062
X153763492X:153763492:T:Crs1050829CPAVsG6PD0.062
11182542091:118254209:A:Grs11580552GOthers0.062
191297560819:12975608:T:Crs7256794CPAVsMAST1-0.061
31957960493:195796049:G:Trs4927866TIntronicTFRC-0.060
8218666628:21866662:T:Crs10503716COthersXPO70.060
31422953683:142295368:C:Ars6782400AIntronicATR-0.057
31322261003:132226100:A:Grs79953286GPAVsDNAJC13-0.056
6162907616:16290761:T:Ars1042391APAVsGMPR-0.056
12433247812:4332478:C:Trs10849023TOthers0.055
104600363110:46003631:A:Crs12773463CIntronicMARCH80.055
6419252906:41925290:T:Ars11970772AIntronicCCND30.054
21122785392:112278539:G:Ars61033544AOthers0.054
205598980820:55989808:C:Trs99595TOthers0.054
166751694516:67516945:C:Trs5030980TPAVsAGRP-0.053
91361311889:136131188:C:Trs8176749TOthersABO-0.053
172718294417:27182944:G:Ars9895443AIntronicERAL1-0.052
223747022422:37470224:T:Crs2413450CIntronicTMPRSS60.052
1630915516:309155:C:Ars1122794AIntronicITFG30.051
107109988810:71099888:G:Ars10159477AIntronicHK10.051
61354152086:135415208:G:Ars2210366AIntronicHBS1L-0.050
146547894814:65478948:T:Grs2296322GOthersFNTB0.049
752316287:5231628:G:Ars6463311AIntronicWIPI2-0.049
213512629721:35126297:G:Ars2834257AIntronicITSN1, AP000304.12-0.048
104595888110:45958881:A:Crs2291429CPAVsMARCH80.048
156609771115:66097711:C:Ars8027781AIntronicRAB11A0.048
11586377281:158637728:T:Crs148912436CPAVsSPTA1-0.048
1624788816:247888:A:Grs3918352GIntronicLUC7L0.047
146547319614:65473196:G:Ars7148590AIntronicCHURC1-FNTB, MAX, FNTB0.047
3243508113:24350811:A:Grs9310736GIntronicTHRB0.046
223746292622:37462926:G:Ars2235321APCVsTMPRSS60.046
2606124572:60612457:C:Ars2137283AIntronicAC007381.20.046
1212116351812:121163518:C:Ars2239760AOthersRP11-173P15.5, ACADS-0.046
6420371676:42037167:C:Trs12194513TIntronicTAF80.045
171992683617:19926836:A:Grs7218708GIntronicSPECC10.045
1621264916:212649:C:Trs3785309TIntronicHBM-0.044
163010316016:30103160:C:Ars3809627AUTRTBX6-0.043
191863343719:18633437:A:Crs271620COthersELL0.042
177612186417:76121864:A:Grs2748427GPAVsTMC6-0.042
512871945:1287194:G:Ars2853677AIntronicTERT0.041
125714606912:57146069:T:Grs2277339GPAVsPRIM10.041
223287519022:32875190:G:Ars11107APTVsFBXO7-0.041
21121434132:112143413:T:Crs2139376CIntronicMIR4435-1HG0.041
137605279013:76052790:G:Ars9565165AIntronicTBC1D4-0.041
6301284426:30128442:C:Trs12212092TPAVsTRIM10-0.041
1612723016:127230:C:Trs3785288TIntronicMPG-0.041
91007401249:100740124:C:Trs4743150TOthers-0.040
142349504814:23495048:T:Crs941718CIntronicPSMB5-0.040
91401179689:140117968:A:Grs73565707GOthersC9orf169, RNF224, RNF2080.040
6162811876:16281187:C:Trs6914805TIntronicGMPR-0.039
3169175533:16917553:A:Grs12485389GIntronicPLCL2-0.038
225097126622:50971266:T:Crs140522COthersTYMP, ODF3B0.038
19450544519:4505445:G:Ars16989695AIntronicPLIN40.038
193374481619:33744816:G:Ars11670517AOthers-0.037
166721910716:67219107:G:Crs9939768CPAVsEXOC3L10.037
31334847123:133484712:G:Ars1525892AIntronicTF-0.037
111923957911:19239579:G:Ars4757773AIntronicRP11-428C19.40.037
2607132352:60713235:A:Grs10189857GIntronicBCL11A-0.037
225096220822:50962208:T:Grs12148GPCVsSCO20.037
203038519220:30385192:C:Trs6058463TPAVsTPX20.036
12480394511:248039451:C:Trs3811444TPAVsTRIM58-0.036
1618052916:180529:G:Ars75187722APAVsNPRL3-0.036
11149892111:114989211:T:Grs2143583GIntronicTRIM330.035
104596642210:45966422:G:Ars901683AIntronicMARCH80.035
125375783112:53757831:A:Grs12582170GOthers0.035
172922622817:29226228:T:Crs2433CPAVsTEFM0.035
3243433303:24343330:T:Crs1505307CIntronicTHRB0.035
61095866786:109586678:G:Ars932222AIntronicC6orf1830.035
1681976711:68197671:A:Grs632959GIntronicGNG120.035
156607069315:66070693:C:Trs2572207TIntronicRAB11A, DENND4A-0.035

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 17127 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References