Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Mean corpuscular hemoglobin concentration


Mean corpuscular hemoglobin conc. iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30060/INI30060.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30060/INI30060.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30060/INI30060.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30060/INI30060.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30060/INI30060.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.015[0.013, 0.017]6.6x10-218
white BritishGenotype-only modelR20.025[0.023, 0.028]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.040[0.037, 0.043]<1.0x10-300
Non-British whiteCovariate-only modelR20.020[0.010, 0.029]1.0x10-13
Non-British whiteGenotype-only modelR20.032[0.019, 0.044]1.4x10-21
Non-British whiteFull model (covariates and genotypes)R20.049[0.033, 0.064]2.8x10-32
South AsianCovariate-only modelR20.009[-0.000, 0.019]2.6x10-04
South AsianGenotype-only modelR20.017[0.004, 0.030]6.3x10-07
South AsianFull model (covariates and genotypes)R20.025[0.010, 0.041]1.6x10-09
AfricanCovariate-only modelR20.009[-0.002, 0.019]1.4x10-03
AfricanGenotype-only modelR20.009[-0.002, 0.019]1.6x10-03
AfricanFull model (covariates and genotypes)R20.016[0.002, 0.030]1.5x10-05
OthersCovariate-only modelR20.035[0.027, 0.043]1.5x10-62
OthersGenotype-only modelR20.024[0.017, 0.030]1.6x10-42
OthersFull model (covariates and genotypes)R20.050[0.040, 0.059]1.5x10-87

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30060/INI30060.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 4468 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
6259182256:25918225:T:Crs80215559CIntronicSLC17A20.088
6260911796:26091179:C:Grs1799945GPAVsHFE0.072
8415436758:41543675:G:Ars34664882APAVsANK10.061
61354190186:135419018:T:Crs9399137CIntronicHBS1L0.050
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.043
8416304058:41630405:G:Ars4737009AIntronicANK1-0.039
71002402967:100240296:A:Grs2075672GIntronicTFR20.031
12036524441:203652444:A:Grs1419114GPCVsATP2B4-0.031
11585800691:158580069:C:Trs2479868TOthersSPTA1, OR10Z1-0.027
12480394511:248039451:C:Trs3811444TPAVsTRIM580.024
6301284426:30128442:C:Trs12212092TPAVsTRIM10-0.023
146547319614:65473196:G:Ars7148590AIntronicCHURC1-FNTB, MAX, FNTB0.021
6162907616:16290761:T:Ars1042391APAVsGMPR-0.019
168885372916:88853729:C:Trs837763TOthersPIEZO1-0.019
1630915516:309155:C:Ars1122794AIntronicITFG30.018
174230569917:42305699:G:Ars9901595AOthersRP5-882C2.2, SHC1P20.018
81264817478:126481747:A:Grs2980875GIntronicRP11-136O12.2-0.018
1621264916:212649:C:Trs3785309TIntronicHBM-0.017
11585771091:158577109:A:Crs857685CPAVsOR10Z1-0.017
172710851617:27108516:A:Grs9895625GIntronicFAM222B0.016
146526330014:65263300:C:Trs229587TPAVsSPTB-0.015
137116891:3711689:T:Crs6667255CIntronicLRRC470.015
174230290717:42302907:G:Ars11652651AOthersUBTF0.014
8862539828:86253982:C:Trs1496532TPTVsCA10.014
61095866786:109586678:G:Ars932222AIntronicC6orf1830.014
61354265736:135426573:A:Grs4895441GOthersHBS1L0.014
194427877919:44278779:T:Grs649540GPAVsKCNN40.014
1292002191:29200219:T:Crs7511894CIntronicRP1-212P9.30.014
156607069315:66070693:C:Trs2572207TIntronicRAB11A, DENND4A-0.013
8198197248:19819724:C:Grs328GPTVsLPL-0.013
8423857488:42385748:A:Crs2923427CIntronicSLC20A20.013
61096164206:109616420:T:Crs9374080CIntronicCCDC162P0.013
1255700811:25570081:T:Crs1043879CPAVsC1orf63-0.012
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK5-0.012
1617032816:170328:C:Trs2238368TIntronicNPRL3-0.012
19448729719:4487297:A:Grs10415226GIntronicHDGFRP20.012
1111664891711:116648917:G:Crs964184CUTRZNF259-0.012
1632075916:320759:C:Trs9806942TPAVsRGS110.012
11976956211:9769562:C:Grs415895GPAVsSWAP700.011
191725215119:17252151:T:Crs35365035CIntronicMYO9B-0.011
1110045660411:100456604:C:Trs11224302TOthers0.011
81457297278:145729727:C:Ars1063739APAVsGPT-0.011
6311224826:31122482:G:Ars130076APAVsCCHCR1-0.011
1664116416:641164:G:Trs4984898TIntronicRAB40C0.011
177810251717:78102517:C:Trs12451471TOthers0.011
51541446505:154144650:T:Crs6882998CIntronicLARP1-0.010
51540598455:154059845:G:Ars13179754AOthers0.010
7730203377:73020337:C:Grs3812316GPAVsMLXIPL-0.010
1399085061:39908506:G:Ars587404APAVsMACF1-0.010
223750668022:37506680:T:Crs228918COthersTMPRSS6-0.010
166751694516:67516945:C:Trs5030980TPAVsAGRP-0.010
194542294619:45422946:A:Grs4420638GOthersAPOC10.009
287502662:8750266:A:Grs3856447GIntronicAC011747.6-0.009
31959213113:195921311:G:Ars9325434AOthersZDHHC19-0.009
1113027574911:130275749:T:Crs11222085CPAVsADAMTS80.009
156609771115:66097711:C:Ars8027781AIntronicRAB11A0.009
191299945819:12999458:C:Trs8110787TOthersKLF1, GCDH0.009
6313225596:31322559:G:Ars2523608AOthersHLA-B-0.009
223748572422:37485724:T:Crs2235324CPAVsTMPRSS60.009
8415072378:41507237:C:Trs7825337TIntronicNKX6-3-0.008
191300154719:13001547:A:Grs11085824GOthersKLF1, GCDH, AD000092.30.008
31957937123:195793712:G:Ars2300774AIntronicTFRC0.008
51534109345:153410934:G:Ars2560059AIntronicFAM114A20.008
158612336415:86123364:G:Ars7177107APAVsAKAP130.008
145883114214:58831142:A:Grs1051858GPAVsARID4A0.008
21137634632:113763463:A:Crs2305152CPAVsIL36A0.008
105030728610:50307286:C:Trs11100985TIntronicVSTM40.008
31958161953:195816195:C:Trs12490036TOthers-0.008
22192722942:219272294:G:Trs921968TOthersMIR26B, CTDSP1-0.008
6325764786:32576478:T:Crs9271100COthers-0.008
184383370118:43833701:T:TCTGrs34068795TCTGPAVsC18orf25-0.008
1620503516:205035:G:Ars2541639AIntronicHBM0.008
21797172172:179717217:A:Grs6711319GIntronicCCDC141-0.008
1667506716:675067:C:Ars62623587APAVsRAB40C0.008
17816114917:8161149:C:Trs4791641TPAVsPFAS0.007
31321635223:132163522:T:Crs9835254CIntronicDNAJC13-0.007
5720560995:72056099:T:Grs10942402GIntronicCTC-347C20.1-0.007
194425358819:44253588:G:Ars173202AIntronicSMG90.007
91361310229:136131022:C:Trs8176751TOthersABO0.007
31964751193:196475119:T:Crs2686596CIntronicPAK20.007
19450544519:4505445:G:Ars16989695AIntronicPLIN40.007
12817989112:8179891:G:Ars7958000AOthers0.007
3123931253:12393125:C:Grs1801282GPAVsPPARG-0.007
148173707614:81737076:A:Crs2241621CPAVsSTON20.007
174424884817:44248848:G:Ars17662853APAVsKANSL1-0.007
752316287:5231628:G:Ars6463311AIntronicWIPI2-0.007
6305584776:30558477:G:GArs72545970GAPTVsABCF1-0.007
6256412006:25641200:T:Crs932316COthers0.007
1434153461:43415346:G:Trs710220TIntronicSLC2A1-0.007
1672420871:67242087:G:Ars3816989APTVsTCTEX1D1-0.007
168878344916:88783449:C:Grs8057031GPCVsPIEZO10.007
91344453269:134445326:T:Grs6597513GOthers-0.007
91116182099:111618209:A:Grs17728850GPTVsACTL7B0.006
22272914152:227291415:A:Crs11686139COthers-0.006
81290595688:129059568:A:Grs2648861GIntronicPVT10.006
2482379412:48237941:T:Crs6750131CIntronicAC079807.4-0.006
20415594820:4155948:G:Ars1741315AIntronicSMOX0.006
161614182316:16141823:T:Crs35592CIntronicABCC1-0.006
7167105667:16710566:A:Grs11763990GIntronicBZW2-0.006
2642929252:64292925:T:Grs17753018GOthers-0.006

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 4468 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References