Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Platelet count


Platelet count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30080/INI30080.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30080/INI30080.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30080/INI30080.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30080/INI30080.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30080/INI30080.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.060[0.057, 0.064]<1.0x10-300
white BritishGenotype-only modelR20.209[0.204, 0.215]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.268[0.263, 0.274]<1.0x10-300
Non-British whiteCovariate-only modelR20.045[0.031, 0.060]3.5x10-30
Non-British whiteGenotype-only modelR20.225[0.198, 0.251]1.6x10-157
Non-British whiteFull model (covariates and genotypes)R20.266[0.238, 0.293]1.4x10-190
South AsianCovariate-only modelR20.085[0.058, 0.112]2.3x10-29
South AsianGenotype-only modelR20.156[0.122, 0.190]1.2x10-54
South AsianFull model (covariates and genotypes)R20.235[0.197, 0.272]3.7x10-85
AfricanCovariate-only modelR20.090[0.060, 0.121]1.7x10-25
AfricanGenotype-only modelR20.067[0.040, 0.094]4.9x10-19
AfricanFull model (covariates and genotypes)R20.139[0.103, 0.175]1.7x10-39
OthersCovariate-only modelR20.063[0.053, 0.073]2.7x10-111
OthersGenotype-only modelR20.193[0.178, 0.209]<1.0x10-300
OthersFull model (covariates and genotypes)R20.249[0.232, 0.265]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30080/INI30080.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 32944 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
1211188531012:111885310:G:Ars72650673APAVsSH2B322.214
205759880820:57598808:G:Ars41303899APAVsTUBB1-9.448
191618555919:16185559:G:Ars8109288AIntronicTPM4-8.676
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-7.645
3568497493:56849749:T:Crs1354034CIntronicARHGEF37.129
12477197691:247719769:G:Ars56043070APTVsGCSAML-7.022
5759969095:75996909:G:Ars34592828APAVsIQGAP2-6.746
951263439:5126343:G:Ars41316003APAVsJAK26.024
171685218717:16852187:A:Grs34557412GPAVsTNFRSF13B-5.388
225065610922:50656109:A:Crs55955211COthersSELO, TUBGCP64.878
154382071715:43820717:C:Trs55707100TPAVsMAP1A4.664
1212236558312:122365583:C:Trs7961894TIntronicWDR66-4.377
191976549919:19765499:C:Trs45522544TPAVsATP13A14.339
11719497501:171949750:T:Crs10914144CIntronicDNM3-4.326
106506618610:65066186:G:Trs10761741TIntronicJMJD1C3.978
947631769:4763176:T:Crs385893COthers3.925
5759609685:75960968:G:Crs34968964CPAVsIQGAP2-3.913
176421058017:64210580:A:Crs1801689CPAVsAPOH3.790
205759797020:57597970:A:Crs463312CPAVsTUBB1-3.790
6335402096:33540209:A:Grs210134GOthersBAK13.606
1111395362211:113953622:G:Ars73000929AIntronicZBTB16-3.501
81065815288:106581528:A:Trs6993770TIntronicZFPM2-3.458
2314648292:31464829:A:Grs647316GIntronicEHD33.404
5759645075:75964507:C:Trs34950321TPAVsIQGAP2-3.348
203029468220:30294682:T:Crs80054178CIntronicBCL2L1, RP11-243J16.73.085
162850642816:28506428:C:Trs151233TPCVsAPOBR2.980
31840902663:184090266:C:Trs6141TUTRTHPO2.954
61354186356:135418635:C:Trs7775698TIntronicHBS1L2.893
22415109032:241510903:G:Ars78909033AIntronicRNPEPL12.783
947660229:4766022:C:Trs10815074TOthersRP11-307I14.4-2.749
468914554:6891455:T:Grs11731274GOthers2.727
947673419:4767341:T:Crs420470COthersRP11-307I14.42.637
71234088427:123408842:G:Ars9886090AOthers2.629
125471230812:54712308:G:Ars10876550AIntronicCOPZ1, RP11-968A15.82.602
182072097318:20720973:G:Trs11082304TIntronicCABLES1-2.598
31243773263:124377326:T:Grs56106611GPAVsKALRN2.531
1311048915213:110489152:C:Trs11618989TOthers-2.519
146968934714:69689347:A:Grs79527901GIntronicEXD22.516
1119806211:198062:C:Grs11605246GPAVsODF32.474
31840913833:184091383:T:TGGAArs55827759TGGAAPAVsTHPO-2.404
1212224711412:122247114:G:Ars77408535AIntronicSETD1B-2.382
156334199615:63341996:T:Crs11071720CIntronicTPM12.350
1410356678514:103566785:C:Trs2297067TPAVsEXOC3L42.251
31840930403:184093040:G:Ars34623301AIntronicEIF2B5, THPO2.112
948403809:4840380:A:Grs10974808GIntronicRCL12.091
1410117043614:101170436:G:Ars12888043AOthers-2.082
21606045142:160604514:C:Trs76774368TPAVsMARCH72.079
168541583816:85415838:T:Crs4783187COthers-2.049
61354190186:135419018:T:Crs9399137CIntronicHBS1L2.030
9219868479:21986847:T:Ars3731211AIntronicRP11-145E5.5, CDKN2A1.987
12052371371:205237137:T:Crs1668871CIntronicTMCC21.981
9990910099:99091009:C:Trs10990535TIntronicSLC35D21.967
6335464986:33546498:C:Trs5745582TIntronicBAK11.956
2277309402:27730940:T:Crs1260326CPAVsGCKR-1.946
71063726227:106372622:T:Crs342294CIntronicCTB-111H14.1-1.946
1438052401:43805240:A:Grs16830693GPAVsMPL1.935
1311401895313:114018953:T:Crs11164132COthersGRTP11.831
124821574912:48215749:G:Ars1859281AIntronicHDAC71.805
11568690471:156869047:G:Trs12566888TIntronicPEAR11.795
1210949029612:109490296:G:Trs12426673TOthersUSP30-AS1-1.775
173388030517:33880305:T:Crs79007502CPAVsSLFN141.760
159924813215:99248132:G:Trs4966015TIntronicIGF1R-1.754
5881569705:88156970:C:Trs304162TIntronicMEF2C1.746
4577974144:57797414:C:Trs3796529TPAVsREST-1.720
22115405072:211540507:C:Ars1047891APAVsCPS1-1.719
139589632113:95896321:T:Crs6492772CIntronicABCC41.714
947599309:4759930:C:Trs12343429TOthers1.713
12480394511:248039451:C:Trs3811444TPAVsTRIM58-1.711
3183114123:18311412:G:Ars7641175AIntronicTBC1D51.700
173388480417:33884804:T:Crs10512472CPAVsSLFN141.697
22272914152:227291415:A:Crs11686139COthers1.695
17487562817:4875628:A:Grs16942615GPAVsCAMTA21.695
116157976011:61579760:T:Crs174555CIntronicFADS1, FADS21.668
31228398763:122839876:G:Ars3792366AIntronicPDIA5-1.664
125464997812:54649978:C:Trs79880068TIntronicCBX51.664
205759940220:57599402:G:Ars6070697APAVsTUBB11.662
168857334716:88573347:G:Trs17700789TIntronicZFPM11.638
1211188248512:111882485:C:Ars2238154AIntronicSH2B31.638
125166451212:51664512:T:Crs7133314CPAVsDAZAP2-1.614
X67919944X:67919944:G:Ars56008802AIntronicSTARD8-1.601
11181556201:118155620:G:Ars3767812AIntronicFAM46C1.596
81449960298:144996029:A:Grs7833924GPAVsPLEC1.595
1652312016:523120:C:Trs7205963TIntronicRAB11FIP31.591
122943567512:29435675:A:Grs1006409GIntronicRP11-996F15.2, FAR2-1.588
224432472722:44324727:C:Grs738409GPAVsPNPLA3-1.584
71063729037:106372903:G:Ars342296AIntronicCTB-111H14.1-1.570
1120422611:12042261:A:Grs2236055GIntronicMFN2-1.556
3567712513:56771251:A:Crs3772219CPAVsARHGEF31.550
156481998015:64819980:A:Grs1562448GIntronicZNF6091.544
1112628895611:126288956:A:Grs4935967GIntronicST3GAL4-1.527
X39679127X:39679127:G:Ars5963693AOthers1.523
1130806511:308065:T:Crs9704108CIntronicIFITM21.512
126506031312:65060313:G:Ars117543282AIntronicRASSF3-1.509
193922908919:39229089:A:Grs12983010GPAVsCAPN121.502
125702100612:57021006:T:Crs2950387CIntronicBAZ2A1.502
6316923866:31692386:C:Grs11575845GPAVsC6orf25-1.490
5881354625:88135462:T:Crs304160CIntronicMEF2C-1.482
9221429079:22142907:G:Ars10811664AOthers-1.476
1211192690112:111926901:T:Crs1029388CIntronicATXN21.476
948562349:4856234:G:Ars1887430AIntronicRCL11.468

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 32944 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References