Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Mean platelet (thrombocyte) volume


Mean platelet vol. iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30100/INI30100.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30100/INI30100.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30100/INI30100.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30100/INI30100.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30100/INI30100.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.003[0.002, 0.004]2.9x10-45
white BritishGenotype-only modelR20.358[0.353, 0.364]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.361[0.355, 0.367]<1.0x10-300
Non-British whiteCovariate-only modelR20.008[0.002, 0.015]1.1x10-06
Non-British whiteGenotype-only modelR20.359[0.331, 0.387]3.4x10-274
Non-British whiteFull model (covariates and genotypes)R20.364[0.336, 0.392]1.2x10-278
South AsianCovariate-only modelR20.003[-0.003, 0.008]5.0x10-02
South AsianGenotype-only modelR20.232[0.194, 0.269]5.4x10-84
South AsianFull model (covariates and genotypes)R20.232[0.195, 0.270]4.5x10-84
AfricanCovariate-only modelR20.001[-0.002, 0.004]3.3x10-01
AfricanGenotype-only modelR20.109[0.076, 0.142]6.3x10-31
AfricanFull model (covariates and genotypes)R20.110[0.077, 0.143]5.1x10-31
OthersCovariate-only modelR20.019[0.013, 0.025]2.3x10-34
OthersGenotype-only modelR20.315[0.299, 0.332]<1.0x10-300
OthersFull model (covariates and genotypes)R20.309[0.293, 0.326]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30100/INI30100.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 31032 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
205759880820:57598808:G:Ars41303899APAVsTUBB10.462
1212224711412:122247114:G:Ars77408535AIntronicSETD1B0.324
5759969095:75996909:G:Ars34592828APAVsIQGAP20.282
5759609685:75960968:G:Crs34968964CPAVsIQGAP20.256
31243036963:124303696:C:Trs56407180TPTVsKALRN-0.236
3568497493:56849749:T:Crs1354034CIntronicARHGEF3-0.226
31243773263:124377326:T:Grs56106611GPAVsKALRN-0.211
191618555919:16185559:G:Ars8109288AIntronicTPM40.200
5759645075:75964507:C:Trs34950321TPAVsIQGAP20.193
22415109032:241510903:G:Ars78909033AIntronicRNPEPL1-0.169
11719497501:171949750:T:Crs10914144CIntronicDNM30.166
1212236558312:122365583:C:Trs7961894TIntronicWDR660.153
12477197691:247719769:G:Ars56043070APTVsGCSAML0.133
6364698216:36469821:C:Trs4236051TIntronicSTK38-0.132
1212230129912:122301299:A:Grs10840624GIntronicHPD-0.120
106506618610:65066186:G:Trs10761741TIntronicJMJD1C-0.112
1212232582012:122325820:A:Grs3847694GOthersRP11-87C12.2, PSMD90.111
125471230812:54712308:G:Ars10876550AIntronicCOPZ1, RP11-968A15.8-0.101
468914554:6891455:T:Grs11731274GOthers-0.096
205759797020:57597970:A:Crs463312CPAVsTUBB1-0.096
12052371371:205237137:T:Crs1668871CIntronicTMCC2-0.093
11568690471:156869047:G:Trs12566888TIntronicPEAR1-0.082
2314648292:31464829:A:Grs647316GIntronicEHD3-0.078
1102716881:10271688:C:Grs11121529GUTRKIF1B0.078
12480392941:248039294:G:Ars1339847APAVsTRIM58-0.073
125702100612:57021006:T:Crs2950387CIntronicBAZ2A-0.066
21134938162:113493816:T:Crs114739246CIntronicNT5DC4-0.064
51586351025:158635102:T:Crs6556405CUTRRNF1450.064
125168190312:51681903:T:Crs7954976CPAVsBIN20.063
146968934714:69689347:A:Grs79527901GIntronicEXD2-0.062
71063722197:106372219:C:Grs342293GIntronicCTB-111H14.10.062
195553659519:55536595:G:Ars1613662APAVsGP60.062
6301051546:30105154:A:Grs28780086GPAVsTRIM40-0.061
8217694328:21769432:A:Grs56094005GPAVsDOK20.061
194571568019:45715680:T:Crs11083767CIntronicMARK4, AC006126.30.061
1111395362211:113953622:G:Ars73000929AIntronicZBTB160.060
172777807317:27778073:C:Trs191010498TIntronicTAOK1-0.060
205759940220:57599402:G:Ars6070697APAVsTUBB1-0.060
11718920851:171892085:G:Ars2093184AIntronicDNM3-0.058
156334199615:63341996:T:Crs11071720CIntronicTPM1-0.058
1010207547910:102075479:G:Ars603424AIntronicPKD2L1-0.056
19680327019:6803270:C:Ars8109794AIntronicVAV10.055
1119806211:198062:C:Grs11605246GPAVsODF3-0.055
122943567512:29435675:A:Grs1006409GIntronicRP11-996F15.2, FAR20.055
162850642816:28506428:C:Trs151233TPCVsAPOBR-0.054
71063726227:106372622:T:Crs342294CIntronicCTB-111H14.10.054
172776391017:27763910:T:Grs8081267GIntronicTAOK10.054
1212234603412:122346034:C:Trs7132055TOthersRNU7-170P0.053
21927012652:192701265:T:Crs116274727CPAVsSDPR0.053
194516203819:45162038:A:Grs203710GPAVsPVR-0.051
186092085418:60920854:C:Trs17758695TIntronicBCL2-0.049
31243402223:124340222:G:Crs10512627CIntronicKALRN0.049
5759068515:75906851:T:Crs7722711CPAVsIQGAP2-0.048
186753518418:67535184:T:Crs1790588CIntronicCD226-0.047
71063729037:106372903:G:Ars342296AIntronicCTB-111H14.10.047
125700793312:57007933:A:Crs12314491CPAVsBAZ2A0.047
175546577117:55465771:C:Trs17834140TIntronicMSI2-0.046
1311401895313:114018953:T:Crs11164132COthersGRTP1-0.046
X67919944X:67919944:G:Ars56008802AIntronicSTARD80.046
11151305081:115130508:A:Grs61753528GPAVsDENND2C0.046
3567712513:56771251:A:Crs3772219CPAVsARHGEF3-0.045
20192362320:1923623:T:Grs4144201GOthersRP4-684O24.5-0.045
124964524012:49645240:T:Crs11168936CIntronicTUBA1C, RP11-977B10.20.044
12480394511:248039451:C:Trs3811444TPAVsTRIM580.044
1311401021513:114010215:A:Grs9549398GIntronicGRTP1-AS1, GRTP1-0.043
41544573284:154457328:G:Ars12645934AIntronicKIAA0922-0.043
91133122319:113312231:G:Crs61751937CPAVsSVEP10.043
18961980518:9619805:C:Trs2289684TOthersRNU6-903P, PPP4R1-0.043
1011416927610:114169276:A:Grs3736946GPAVsACSL50.043
186761723618:67617236:T:Crs111170397CIntronicCD2260.043
159151226715:91512267:G:Trs2290202TIntronicPRC1, PRC1-AS10.042
X39679127X:39679127:G:Ars5963693AOthers-0.042
205759930320:57599303:C:Trs35565630TPAVsTUBB1-0.042
81065815288:106581528:A:Trs6993770TIntronicZFPM20.042
168187096916:81870969:C:Trs12445050TIntronicPLCG20.041
6316923866:31692386:C:Grs11575845GPAVsC6orf250.041
172776959817:27769598:G:Ars9900280AIntronicTAOK10.041
123290823712:32908237:C:Ars11539445APAVsYARS2-0.041
92864919:286491:G:Ars3209441APAVsDOCK8-0.040
92731609:273160:T:Crs540909CIntronicDOCK8-0.040
31228398763:122839876:G:Ars3792366AIntronicPDIA50.040
1410356678514:103566785:C:Trs2297067TPAVsEXOC3L4-0.039
1258774921:25877492:C:Trs75446219TIntronicLDLRAP10.039
511049385:1104938:C:Trs35188965TIntronicSLC12A7-0.039
1212232169912:122321699:A:Grs7309105GOthersPSMD9-0.039
12629332212:6293322:T:Crs4417359COthers0.039
12052097451:205209745:A:Grs896322GIntronicTMCC2-0.038
186759951618:67599516:T:Crs3937015CIntronicCD226-0.038
1291957571:29195757:T:Grs204066GIntronicRP1-212P9.20.038
126506031312:65060313:G:Ars117543282AIntronicRASSF30.038
1410356683514:103566835:C:Grs2297066GPAVsEXOC3L4-0.038
93277829:327782:T:Crs3818558CIntronicDOCK8-0.038
11181556201:118155620:G:Ars3767812AIntronicFAM46C-0.038
125468588012:54685880:C:Trs35979828TIntronicRP11-968A15.80.037
1212230173812:122301738:T:Crs11043223COthersHPD-0.037
X39706746X:39706746:A:Grs5963697GIntronicMIR1587-0.037
171685218717:16852187:A:Grs34557412GPAVsTNFRSF13B-0.037
X57010138X:57010138:C:Trs912956TIntronicSPIN3-0.036
11568784731:156878473:C:Trs77795865TPAVsPEAR1-0.036
17154002717:1540027:C:Trs34297715TPAVsSCARF10.036

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 31032 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References