Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Lymphocyte count


Lymphocyte count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30120/INI30120.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30120/INI30120.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30120/INI30120.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30120/INI30120.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30120/INI30120.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.006[0.004, 0.007]2.6x10-82
white BritishGenotype-only modelR20.022[0.020, 0.024]1.9x10-308
white BritishFull model (covariates and genotypes)R20.027[0.025, 0.030]<1.0x10-300
Non-British whiteCovariate-only modelR20.007[0.001, 0.014]5.1x10-06
Non-British whiteGenotype-only modelR20.027[0.015, 0.039]1.9x10-18
Non-British whiteFull model (covariates and genotypes)R20.034[0.021, 0.047]8.8x10-23
South AsianCovariate-only modelR20.020[0.006, 0.034]1.0x10-07
South AsianGenotype-only modelR20.042[0.022, 0.062]4.1x10-15
South AsianFull model (covariates and genotypes)R20.059[0.036, 0.082]1.3x10-20
AfricanCovariate-only modelR20.024[0.007, 0.040]1.7x10-07
AfricanGenotype-only modelR20.006[-0.003, 0.014]1.2x10-02
AfricanFull model (covariates and genotypes)R20.019[0.004, 0.034]3.4x10-06
OthersCovariate-only modelR20.021[0.015, 0.027]3.2x10-37
OthersGenotype-only modelR20.029[0.022, 0.036]2.4x10-51
OthersFull model (covariates and genotypes)R20.047[0.038, 0.056]9.4x10-83

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30120/INI30120.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 7291 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.042
191652783419:16527834:T:Crs4808047CIntronicEPS15L10.032
11143775681:114377568:A:Grs2476601GPAVsPTPN220.022
5358762745:35876274:A:Grs3194051GPAVsIL7R0.021
222198289222:21982892:C:Trs2298428TPAVsYDJC-0.021
7450040637:45004063:T:Crs7792760CPAVsMYO1G0.020
12650213112:6502131:T:Grs2364482GOthersRP1-102E24.80.019
9219734229:21973422:G:Trs2811708TIntronicRP11-145E5.5, CDKN2A-0.018
4383308554:38330855:C:Trs13139166TOthers0.017
3122676483:12267648:A:Grs7616006GOthers-0.016
168458176816:84581768:C:Trs247832TIntronicTLDC10.016
191644278219:16442782:C:Trs34006614TOthersKLF2-0.016
137470525113:74705251:C:Trs9600237TIntronicKLF120.016
1112336139711:123361397:G:Ars735665AOthers0.015
41035570774:103557077:G:Ars2866413APAVsMANBA0.014
6420242856:42024285:G:Ars10948011AIntronicTAF80.014
1311483013213:114830132:C:Trs7986001TIntronicRASA3-0.014
159101126215:91011262:A:Grs2238325GIntronicIQGAP10.013
3393071623:39307162:G:Ars3732378APAVsCX3CR10.013
6248065946:24806594:C:Trs9358799TPTVsFAM65B-0.013
6313193556:31319355:G:Trs2442728TOthersHLA-B-0.013
2254910562:25491056:A:Grs7583409GIntronicDNMT3A0.013
163049388116:30493881:T:Crs11150590CIntronicRP11-297C4.2, ITGAL0.013
17200182517:2001825:T:Crs7225843CIntronicSMG6, RP11-667K14.5-0.013
21819810552:181981055:G:Ars6706696AIntronicAC104820.2-0.013
19107995919:1079959:G:Ars36084354APAVsHMHA1-0.013
8795722228:79572222:C:Ars1384804AOthers-0.013
20192228320:1922283:T:Grs6112072GOthersSIRPA-0.013
632552086HLA-DRB1*0101HLA-DRB1*0101+PAVsHLA-DRB10.012
631238217HLA-C*0401HLA-C*0401+PAVsHLA-C0.012
3469885613:46988561:C:Trs13092573TIntronicCCDC120.012
191039568319:10395683:A:Grs5498GPAVsICAM1-0.012
21437981892:143798189:A:Grs9013GPAVsKYNU-0.012
21821999172:182199917:C:Ars2218160AIntronicAC104820.20.012
6311065016:31106501:C:CCAffx-89026413CCPTVsPSORS1C10.012
191047565219:10475652:C:Ars2304256APAVsTYK20.012
3464500723:46450072:G:Ars6441977APAVsCCRL20.012
12988570712:9885707:A:ATAAGTrs71045297ATAAGTPTVsCLECL10.012
21883434972:188343497:T:Crs7586970CPAVsTFPI-0.012
143583455814:35834558:C:Trs11621391TOthersRP11-561B11.3-0.012
177270094317:72700943:A:Grs35489971GPAVsCD300LF0.012
17460862217:4608622:T:Crs7215300COthersRP11-314A20.2-0.011
2242456592:24245659:C:Trs17712391TIntronicMFSD2B0.011
20860739320:8607393:G:Ars4432538AIntronicPLCB1-0.011
12991016412:9910164:G:Ars4763879AIntronicCD69-0.011
12992311312:9923113:T:Crs724666COthers-0.011
22272914152:227291415:A:Crs11686139COthers0.011
137467557313:74675573:T:Crs2104388CIntronicKLF12-0.011
155675628515:56756285:T:Grs1715919GPAVsMNS10.010
61354190186:135419018:T:Crs9399137CIntronicHBS1L-0.010
21115997062:111599706:G:Ars4849121AIntronicACOXL0.010
X153220360X:153220360:A:Grs1051152GPAVsHCFC1-0.010
4386048074:38604807:T:Crs337638COthers0.010
6312371246:31237124:T:Crs1130838CPAVsHLA-C0.010
1112252025311:122520253:T:Crs1945390COthers0.010
121287925412:12879254:T:Grs7956514GPAVsAPOLD10.010
2437328232:43732823:T:Crs7578597CPAVsTHADA-0.010
191394222119:13942221:A:Grs3745453GUTRZSWIM40.010
8786436198:78643619:T:Crs17385111COthers0.010
17288358817:2883588:C:Ars17762452APAVsRAP1GAP2-0.010
64110646:411064:A:Grs872071GUTRIRF40.010
6315066916:31506691:G:Ars2071596APAVsDDX39B-0.010
11012358411:101235841:A:Grs1409423GOthers0.010
X3664074X:3664074:T:Crs6641876COthers-0.010
3277570183:27757018:G:Trs2371108TOthersEOMES, RP11-222K16.20.010
1410334204914:103342049:T:Crs1131877CPAVsTRAF30.010
168884942116:88849421:A:Grs2608604GIntronicPIEZO1-0.010
4835030204:83503020:C:Ars4693460AOthersRP11-791G16.4-0.010
61080533646:108053364:G:Ars12526696AUTRSCML40.010
191415329319:14153293:T:Crs35026308CPAVsIL27RA0.009
1674708431:67470843:C:Trs2755253TIntronicSLC35D1-0.009
525555145:2555514:A:Crs10475169COthers0.009
9221429079:22142907:G:Ars10811664AOthers-0.009
194427877919:44278779:T:Grs649540GPAVsKCNN40.009
51505183575:150518357:C:CGrs34624580CGPAVsANXA6-0.009
6342171816:34217181:C:Ars1150777AUTRC6orf10.009
194767979819:47679798:T:Crs466477CIntronicSAE1-0.009
222903786422:29037864:C:Ars9625520AIntronicTTC28-0.009
31510335973:151033597:A:Crs6767266CIntronicMED12L, GPR870.009
191644951719:16449517:C:Trs1000329TOthers-0.009
12989743412:9897434:G:Ars10772104AOthers0.009
91377689799:137768979:T:Crs4372082COthersFCN2-0.009
6531300816:53130081:C:Trs2057024TOthersELOVL50.009
9357118069:35711806:G:Trs2249250TPAVsTLN1-0.009
21612923872:161292387:T:Crs13429951CIntronicRBMS1-0.008
17463856317:4638563:G:Ars2277680APAVsCXCL16-0.008
81290072078:129007207:A:Grs10956403GIntronicPVT1-0.008
4381098474:38109847:T:Crs1344603CIntronicTBC1D10.008
20193070420:1930704:C:Trs4470399TIntronicRP4-684O24.5-0.008
146695353414:66953534:G:Ars7147360APAVsLINC002380.008
4383141704:38314170:A:Grs1586459GOthers0.008
1252514241:25251424:G:Ars742230AIntronicRUNX30.008
174233930317:42339303:G:Trs2074106TIntronicSLC4A1, AC003043.10.008
3163278553:16327855:T:Grs842274GPAVsOXNAD10.008
91236480859:123648085:A:Grs10818482GOthers0.008
6445863636:44586363:C:Trs6913259TOthers-0.008
11607935601:160793560:A:Grs509749GPAVsLY90.008
116017336011:60173360:A:Grs4938941GPTVsMS4A140.008
9865499399:86549939:C:Ars10124390AOthersC9orf64-0.008
2436322002:43632200:G:Ars6714067AIntronicTHADA-0.008

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 7291 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References