Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Monocyte count


Monocyte count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30130/INI30130.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30130/INI30130.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30130/INI30130.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30130/INI30130.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30130/INI30130.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.042[0.039, 0.045]<1.0x10-300
white BritishGenotype-only modelR20.082[0.078, 0.086]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.124[0.120, 0.129]<1.0x10-300
Non-British whiteCovariate-only modelR20.057[0.040, 0.073]2.1x10-37
Non-British whiteGenotype-only modelR20.090[0.070, 0.110]2.1x10-59
Non-British whiteFull model (covariates and genotypes)R20.145[0.121, 0.169]1.2x10-97
South AsianCovariate-only modelR20.044[0.024, 0.065]8.6x10-16
South AsianGenotype-only modelR20.070[0.045, 0.095]2.2x10-24
South AsianFull model (covariates and genotypes)R20.113[0.082, 0.143]7.8x10-39
AfricanCovariate-only modelR20.005[-0.003, 0.013]1.3x10-02
AfricanGenotype-only modelR20.033[0.014, 0.053]3.9x10-10
AfricanFull model (covariates and genotypes)R20.033[0.014, 0.053]4.2x10-10
OthersCovariate-only modelR20.043[0.034, 0.051]3.0x10-75
OthersGenotype-only modelR20.079[0.068, 0.091]6.1x10-141
OthersFull model (covariates and genotypes)R20.111[0.098, 0.124]6.0x10-199

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30130/INI30130.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 13415 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
221758675722:17586757:T:Crs140221307CPAVsIL17RA-0.056
132862304813:28623048:T:Crs79490353CIntronicFLT30.037
1925542831:92554283:G:Ars34856868APAVsBTBD80.021
3429061163:42906116:T:Crs2228467CPAVsACKR20.018
21823193012:182319301:C:Trs1449263TOthersITGA40.018
126974401412:69744014:C:Ars1800973APAVsLYZ0.017
171685218717:16852187:A:Grs34557412GPAVsTNFRSF13B-0.012
7924083707:92408370:C:Trs445TIntronicCDK6-0.010
91139159059:113915905:T:Crs10980800CIntronicRP11-202G18.10.010
12361072411:236107241:A:Crs6429432COthersRP5-940F7.2-0.009
81305975858:130597585:C:Ars2163950AIntronicCCDC26-0.009
3393071623:39307162:G:Ars3732378APAVsCX3CR10.009
168593883516:85938835:G:Ars11646550AIntronicIRF8-0.008
168596654816:85966548:A:Grs76121846GOthersRP11-542M13.30.008
132862429413:28624294:G:Ars1933437APAVsFLT30.008
158026321715:80263217:C:Trs3826007TPAVsBCL2A1-0.007
11591754941:159175494:C:Trs34599082TPAVsDARC-0.007
7504176327:50417632:A:Grs62447197GIntronicIKZF1-0.007
1410384727414:103847274:C:Trs8020912TOthersMARK30.007
195432731319:54327313:C:Ars34436714APAVsNLRP12-0.007
156463488415:64634884:C:Ars6494475APAVsCTD-2116N17.10.007
91139194699:113919469:G:Trs10217127TIntronicRP11-202G18.1-0.007
194574077119:45740771:C:Trs17356664TIntronicMARK4-0.007
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.006
168593303816:85933038:C:Trs2270502TIntronicIRF8-0.006
203119101520:31191015:C:Trs12480732TIntronicRP11-410N8.40.006
12650084312:6500843:G:Ars4301834AOthersRP1-102E24.8-0.006
51494981515:149498151:G:Ars246394AIntronicPDGFRB-0.006
31283033733:128303373:C:Trs6798431TOthers0.006
204895695420:48956954:A:Grs4811031GOthers-0.006
168599543616:85995436:T:Crs113646461COthers0.006
7503058637:50305863:T:Grs4917014GOthers-0.005
81305773828:130577382:T:Grs9649961GIntronicCCDC26-0.005
175796839817:57968398:AC:Ars143803908APTVsTUBD1-0.005
3463992083:46399208:G:Ars1799864APAVsCCR2-0.005
81306854578:130685457:T:Grs4295627GIntronicCCDC26-0.005
142358905714:23589057:G:Ars2239633AOthersCEBPE0.005
186092085418:60920854:C:Trs17758695TIntronicBCL2-0.005
61354190186:135419018:T:Crs9399137CIntronicHBS1L-0.005
91139116139:113911613:T:Crs7870066CIntronicRP11-202G18.1-0.005
765023677:6502367:T:Crs6796CUTRKDELR20.005
168591755116:85917551:T:Crs9937847COthers-0.005
204890928020:48909280:C:Trs17196808TOthersRP11-290F20.1-0.004
194997939819:49979398:G:Ars17272847APAVsFLT3LG0.004
142545948214:25459482:T:Crs2332462CIntronicSTXBP60.004
9914602489:91460248:C:Trs2174057TOthers-0.004
154226178115:42261781:G:Ars1002774AIntronicEHD4-0.004
102521824310:25218243:G:Trs10828725TIntronicPRTFDC1-0.004
204889442420:48894424:A:Crs2274950COthersRP11-290F20.30.004
168600976016:86009760:C:Ars12232384AOthers0.004
11509029411:150902941:A:Grs11204744GIntronicSETDB1-0.004
3463067003:46306700:T:Crs4987053CPCVsCCR3-0.004
134100302213:41003022:C:Trs9315776TOthers-0.004
6419910616:41991061:A:Grs4714552GIntronicCCND3-0.004
4835703004:83570300:T:Crs17005996CIntronicSCD5-0.004
91139483979:113948397:A:Grs17207110GIntronicRP11-202G18.1-0.004
11505717301:150571730:A:Grs2048558GOthersENSA, SNORA40-0.004
91139450469:113945046:A:Grs12339649GIntronicRP11-202G18.10.004
191838913519:18389135:A:Grs12608504GOthersKIAA1683, MIR31880.004
6824633766:82463376:C:Trs915125TOthersFAM46A0.004
158026340615:80263406:C:Trs1138357TPAVsBCL2A1-0.004
7502583137:50258313:C:Trs1870028TOthers-0.004
81306791768:130679176:A:Grs6985166GIntronicCCDC26-0.004
91139583519:113958351:C:Ars2039183AIntronicRP11-202G18.10.004
168599170516:85991705:A:Crs11642873COthers0.004
21368838232:136883823:C:Trs4954391TOthers-0.004
1010127436510:101274365:G:Ars7078219AOthers-0.003
7504737517:50473751:G:Ars6944602AOthersIKZF10.003
149352389414:93523894:C:Trs749619TIntronicITPK10.003
22415696922:241569692:C:Trs3749171TPAVsGPR35-0.003
109907203610:99072036:T:Crs11189121COthersRP11-452K12.3-0.003
1112249989511:122499895:A:Grs11607161GOthers0.003
178110368217:81103682:T:Crs9330525CIntronicAC139099.40.003
132848265413:28482654:T:Crs9581941CIntronicPDX1-AS10.003
31880876283:188087628:C:Trs9851967TIntronicLPP-0.003
12909899512:9098995:G:GAACrs3217106GAACPAVsM6PR0.003
194428189819:44281898:G:Ars11879798AIntronicKCNN4-0.003
6315066916:31506691:G:Ars2071596APAVsDDX39B-0.003
81306275558:130627555:T:Crs7814618CIntronicCCDC26-0.003
21117897912:111789791:A:Grs13012948GIntronicACOXL-0.003
1210872429612:108724296:G:Trs952584TIntronicCMKLR1-0.003
20860459320:8604593:G:Ars6077396AIntronicPLCB1-0.003
9221456949:22145694:A:Grs2065500GOthers-0.003
175787539617:57875396:C:Trs2665404TIntronicVMP10.003
134098460113:40984601:A:Grs2324606GOthersRN7SKP2-0.003
1112854663411:128546634:G:Trs580481TIntronicRP11-744N12.30.003
1310897904313:108979043:T:Crs1224174COthers0.003
221758920922:17589209:C:Trs879577TPAVsIL17RA0.003
168592781416:85927814:C:Trs391023TOthersIRF8-0.003
671671706:7167170:A:Grs9379077GIntronicRREB10.003
158019424715:80194247:C:Trs2115536TIntronicST20, ST20-MTHFS0.003
21119314212:111931421:T:Crs726430COthers-0.003
51494817785:149481778:C:Trs7722898TIntronicCSF1R0.003
134121653413:41216534:C:Trs4325427TIntronicFOXO1-0.003
51494365455:149436545:G:Ars216137AIntronicCSF1R0.003
22257276632:225727663:C:Trs6436515TIntronicDOCK10-0.003
3122676483:12267648:A:Grs7616006GOthers-0.003
6324110356:32411035:A:Crs8084CPTVsHLA-DRA0.003
12437982081:243798208:G:Trs320330TIntronicAKT30.003
172584364317:25843643:G:Ars2945412AIntronicKSR1-0.003

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 13415 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References