Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Neutrophil count


Neutrophil count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30140/INI30140.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30140/INI30140.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30140/INI30140.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30140/INI30140.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30140/INI30140.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.019[0.017, 0.021]2.1x10-278
white BritishGenotype-only modelR20.090[0.086, 0.094]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.109[0.104, 0.113]<1.0x10-300
Non-British whiteCovariate-only modelR20.022[0.011, 0.032]4.9x10-15
Non-British whiteGenotype-only modelR20.093[0.072, 0.113]2.8x10-61
Non-British whiteFull model (covariates and genotypes)R20.113[0.092, 0.135]2.5x10-75
South AsianCovariate-only modelR20.011[0.000, 0.021]8.4x10-05
South AsianGenotype-only modelR20.080[0.054, 0.106]1.0x10-27
South AsianFull model (covariates and genotypes)R20.089[0.061, 0.116]1.4x10-30
AfricanCovariate-only modelR20.016[0.002, 0.031]1.3x10-05
AfricanGenotype-only modelR20.057[0.032, 0.082]2.4x10-16
AfricanFull model (covariates and genotypes)R20.070[0.042, 0.098]6.3x10-20
OthersCovariate-only modelR20.037[0.029, 0.045]1.2x10-64
OthersGenotype-only modelR20.096[0.084, 0.109]2.9x10-172
OthersFull model (covariates and genotypes)R20.109[0.096, 0.122]6.0x10-196

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30140/INI30140.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 18612 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
11591746831:159174683:T:Crs2814778CUTRDARC-0.558
22189999822:218999982:G:Ars55799208APAVsCXCR2-0.235
11591754941:159175494:C:Trs34599082TPAVsDARC-0.174
7924083707:92408370:C:Trs445TIntronicCDK6-0.102
175635650217:56356502:A:Grs56378716GPAVsMPO0.095
194415310019:44153100:A:Grs4760GPAVsPLAUR-0.080
173816687917:38166879:T:Crs8078723COthersCSF30.056
12361072411:236107241:A:Crs6429432COthersRP5-940F7.2-0.054
8616601638:61660163:A:Grs11775560GIntronicCHD70.052
1369455591:36945559:G:Ars3917925AIntronicCSF3R-0.047
7287150567:28715056:A:Grs16874653GIntronicCREB50.042
4749630494:74963049:C:Trs9131TUTRCXCL2-0.041
31283164353:128316435:A:Grs4328821GOthers0.040
142545948214:25459482:T:Crs2332462CIntronicSTXBP60.038
1369417511:36941751:A:Grs3917950GOthersCSF3R-0.038
173817084517:38170845:G:Ars2227319AOthersRP11-387H17.6-0.037
194574077119:45740771:C:Trs17356664TIntronicMARK4-0.037
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.036
4553941724:55394172:C:Trs218237TOthers0.036
51482064735:148206473:G:Crs1042714CPAVsADRB2-0.036
21607290052:160729005:C:Trs1397706TPAVsLY75, LY75-CD3020.035
102520740310:25207403:A:Crs10828724CIntronicPRTFDC1-0.035
173814354817:38143548:C:Trs4065321TIntronicPSMD3-0.035
7282792437:28279243:G:Ars4722771AIntronicJAZF1-AS10.034
154226178115:42261781:G:Ars1002774AIntronicEHD4-0.034
1111395814211:113958142:GT:Grs35092495GIntronicZBTB160.034
4363311004:36331100:A:Grs9306932GIntronicDTHD1, RP11-431M7.20.034
1510171892715:101718927:G:Ars3743193APAVsCHSY10.033
51732042105:173204210:A:Grs812618GOthers-0.031
17774260117:7742601:G:Ars74480102AOthersKDM6B-0.031
107352063210:73520632:A:Crs3747869CPAVsC10orf540.031
81423262688:142326268:A:Grs13278983GOthers-0.031
106492782310:64927823:C:Grs1935GPAVsJMJD1C-0.030
168593883516:85938835:G:Ars11646550AIntronicIRF80.030
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.030
132862304813:28623048:T:Crs79490353CIntronicFLT30.030
1369348051:36934805:C:Grs3917991GPAVsCSF3R0.030
81306398048:130639804:G:Ars7012787AIntronicCCDC26-0.029
187407107818:74071078:T:Crs3177609CUTRZNF516-0.029
8229744508:22974450:T:Crs9644063CPAVsTNFRSF10C-0.029
7990817307:99081730:A:Grs6962772GPAVsZNF789-0.028
31283362213:128336221:A:Crs2712429COthersRPN1-0.028
6311252576:31125257:C:Ars72856718APTVsCCHCR10.027
31412068003:141206800:C:Trs9819371TIntronicRASA2-0.027
7450040637:45004063:T:Crs7792760CPAVsMYO1G0.027
146987094414:69870944:A:Grs12884741GIntronicSLC39A90.027
4747098594:74709859:A:Trs13110736TIntronicCXCL6-0.027
7287144277:28714427:T:Crs41344CIntronicCREB50.027
1569062741:56906274:G:Ars7537229AOthers0.026
632605398HLA-DQA1*0301HLA-DQA1*0301+PAVsHLA-DQA10.026
7287234077:28723407:G:Ars886816AIntronicCREB50.026
1111398687911:113986879:A:Grs238910GIntronicZBTB160.026
47061014:706101:A:Grs4690293GIntronicPCGF30.025
5717442425:71744242:C:Trs10060299TIntronicZNF366-0.025
132862429413:28624294:G:Ars1933437APAVsFLT30.025
1130561911:305619:T:Crs6421984COthersIFITM2, RP11-326C3.40.025
512823195:1282319:C:Ars7726159AIntronicTERT0.025
4726183234:72618323:G:Trs4588TPAVsGC-0.024
11143775681:114377568:A:Grs2476601GPAVsPTPN220.024
154223531615:42235316:C:Trs11549015TPAVsEHD40.024
17137351817:1373518:T:Crs9905106CPAVsMYO1C0.024
9866172659:86617265:A:Grs1982151GPAVsRMI10.024
61096135646:109613564:T:Crs7748918CIntronicCCDC162P0.024
780335187:8033518:A:Crs17566854CIntronicRPA3-AS1, GLCCI1-0.023
6425060996:42506099:G:Ars11755487AOthers0.023
6312518956:31251895:A:Grs2524057GOthersWASF5P, RPL3P20.023
21823193012:182319301:C:Trs1449263TOthersITGA40.023
1793588271:79358827:G:Trs1968956TPAVsELTD10.023
81423200498:142320049:A:Grs6578160GOthersSLC45A40.023
128895148512:88951485:C:Trs1472899TIntronicKITLG-0.022
22377807272:237780727:T:Crs4074882COthers0.022
6879685656:87968565:A:Grs9362415GPAVsZNF292-0.022
12080365091:208036509:C:Trs882198TIntronicC1orf132-0.022
61354190186:135419018:T:Crs9399137CIntronicHBS1L-0.022
156463488415:64634884:C:Ars6494475APAVsCTD-2116N17.10.022
1212014692512:120146925:G:Ars11064881AIntronicCIT-0.021
21697074282:169707428:C:Trs540652TPAVsNOSTRIN-0.021
191978952819:19789528:A:Grs2304130GPAVsZNF1010.021
11560996691:156099669:T:Grs513043GPAVsLMNA-0.021
12476015951:247601595:T:Crs12239046CIntronicNLRP30.021
92864919:286491:G:Ars3209441APAVsDOCK80.021
71488010917:148801091:G:Ars11525060APCVsZNF425-0.021
4749590934:74959093:A:Grs1837559GOthersCXCL20.021
22115405072:211540507:C:Ars1047891APAVsCPS1-0.021
81305863558:130586355:C:Trs12677963TIntronicCCDC260.020
81306500488:130650048:T:Crs4382437CIntronicCCDC26-0.020
31197928823:119792882:C:Trs334533TIntronicGSK3B-0.020
3429071123:42907112:A:Crs2228468CPAVsACKR2-0.020
8302808338:30280833:G:Ars2979489AIntronicRBPMS0.020
193594124819:35941248:T:Ars409093APAVsFFAR20.020
7922361647:92236164:T:Crs8179CUTRCDK6-0.020
1130314811:303148:A:Grs7102856GOthersIFITM2, IFITM50.020
2655396412:65539641:C:Trs11548393TUTRSPRED2-0.019
21366918252:136691825:T:Crs309164CIntronicDARS0.019
102879924010:28799240:C:Trs2993985TOthers0.019
7503044617:50304461:C:Trs1456896TOthers0.019
19101854119:1018541:A:Grs2240167GIntronicTMEM2590.019
31964805953:196480595:C:Trs843529TIntronicPAK2-0.019
191034969019:10349690:T:Crs8113091COthers-0.019
4577974144:57797414:C:Trs3796529TPAVsREST-0.019

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 18612 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References