Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Eosinophil count


Eosinophil count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30150/INI30150.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30150/INI30150.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30150/INI30150.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30150/INI30150.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30150/INI30150.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.009[0.007, 0.010]9.8x10-129
white BritishGenotype-only modelR20.093[0.089, 0.097]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.101[0.097, 0.106]<1.0x10-300
Non-British whiteCovariate-only modelR20.013[0.005, 0.021]2.4x10-09
Non-British whiteGenotype-only modelR20.072[0.054, 0.090]1.8x10-47
Non-British whiteFull model (covariates and genotypes)R20.084[0.065, 0.104]1.4x10-55
South AsianCovariate-only modelR20.005[-0.002, 0.013]5.8x10-03
South AsianGenotype-only modelR20.048[0.027, 0.069]5.6x10-17
South AsianFull model (covariates and genotypes)R20.053[0.031, 0.075]1.2x10-18
AfricanCovariate-only modelR20.010[-0.001, 0.021]7.1x10-04
AfricanGenotype-only modelR20.007[-0.002, 0.016]6.1x10-03
AfricanFull model (covariates and genotypes)R20.013[0.000, 0.026]9.9x10-05
OthersCovariate-only modelR20.028[0.021, 0.035]3.5x10-50
OthersGenotype-only modelR20.069[0.058, 0.080]3.7x10-122
OthersFull model (covariates and genotypes)R20.093[0.081, 0.105]2.0x10-165

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30150/INI30150.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 16859 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
17453531417:4535314:G:Ars34210653APAVsALOX15-0.016
962559679:6255967:G:Crs146597587CPTVsIL33-0.011
31283164353:128316435:A:Grs4328821GOthers-0.011
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.010
961973929:6197392:T:Crs1888909COthersRP11-575C20.1-0.008
213638780621:36387806:C:Trs2242886TIntronicRUNX1-0.008
106443120610:64431206:T:Crs12413946CUTRZNF3650.006
7924083707:92408370:C:Trs445TIntronicCDK6-0.005
186092085418:60920854:C:Trs17758695TIntronicBCL2-0.005
7754427237:75442723:G:Ars11465293APAVsCCL24-0.005
22138240452:213824045:A:Grs12619285GIntronicAC079610.1-0.005
6311065016:31106501:C:CCAffx-89026413CCPTVsPSORS1C1-0.004
22426906752:242690675:G:Ars1106639APAVsD2HGDH-0.004
106439753810:64397538:T:Crs16917546CIntronicZNF365-0.004
191642665719:16426657:A:Grs386869GIntronicCTD-2562J15.6-0.004
1130912711:309127:A:Grs1059091GPAVsIFITM20.004
149441753114:94417531:T:Crs11555542CPAVsASB20.004
21029665492:102966549:A:Grs10197862GIntronicIL1RL1, IL18R1-0.004
191642397919:16423979:G:Ars74366434AIntronicCTD-2562J15.60.004
331570513:3157051:C:Trs1153462TIntronicIL5RA-0.003
19107995919:1079959:G:Ars36084354APAVsHMHA1-0.003
51482064735:148206473:G:Crs1042714CPAVsADRB20.003
21029508222:102950822:A:Crs13019081CIntronicIL1RL1, IL18R10.003
213643737921:36437379:A:Grs8133412GPAVsRUNX10.003
1132733411:327334:C:Trs11246068TUTRIFITM3-0.003
147597812114:75978121:T:Crs175707COthers0.003
21029682092:102968209:TC:TAffx-52334280TPTVsIL1RL1-0.003
6326297556:32629755:G:Ars1130399APAVsHLA-DQB10.003
51319522225:131952222:T:Crs6596086CIntronicRAD500.003
51104018725:110401872:T:Crs1837253COthersTSLP0.003
51415230005:141523000:C:Trs1062158TOthersNDFIP10.003
61354313186:135431318:T:Crs6920211COthers-0.003
117629919411:76299194:G:Trs2155219TOthersRP11-672A2.70.003
7754427307:75442730:T:Grs2302006GPAVsCCL24-0.003
7205062457:20506245:T:Crs11974870COthers-0.003
102879323910:28793239:A:Grs2998285GOthers0.003
61074205166:107420516:A:Crs4946811CPAVsBEND3-0.003
10905313210:9053132:C:Trs962993TOthers-0.003
194021956219:40219562:T:Grs439881GOthersCLC0.003
17774260117:7742601:G:Ars74480102AOthersKDM6B-0.003
166768080616:67680806:G:Ars117556162APAVsRLTPR0.003
51316763205:131676320:C:Trs1050152TPAVsSLC22A4-0.003
3429061163:42906116:T:Crs2228467CPAVsACKR20.003
213671576121:36715761:C:Trs9979383TIntronicRUNX10.003
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.003
9941213309:94121330:G:Ars7020893AIntronicAUH-0.003
11985986631:198598663:G:Ars7555082AOthers-0.003
163010316016:30103160:C:Ars3809627AUTRTBX60.003
91358692559:135869255:T:Crs77267537COthersGFI1B0.003
174406740017:44067400:T:Crs10445337CPAVsMAPT-0.003
21119893722:111989372:T:Grs6720394GIntronicMIR4435-1HG0.003
175546577117:55465771:C:Trs17834140TIntronicMSI2-0.002
1877508531:87750853:A:Grs11161968GOthers0.002
197135001:9713500:G:Ars4240896AUTRC1orf200-0.002
173793122017:37931220:A:Grs7503018GIntronicIKZF3-0.002
22138973082:213897308:C:Trs10932459TIntronicIKZF2-0.002
1099014310:990143:C:Trs61833265TOthersRP11-363N22.20.002
51319012255:131901225:A:Grs2244012GIntronicRAD500.002
6324110356:32411035:A:Crs8084CPTVsHLA-DRA0.002
22423711012:242371101:C:Trs757978TPAVsFARP2-0.002
115714622511:57146225:A:Grs34108746GPAVsPRG3-0.002
31884424803:188442480:T:Crs9290877CIntronicLPP0.002
194272883619:42728836:T:Crs3810151CPAVsZNF5260.002
4386636604:38663660:T:Crs12507197CIntronicAC021860.1, RP11-617D20.10.002
331399573:3139957:T:Crs2290610CPAVsIL5RA-0.002
81290072078:129007207:A:Grs10956403GIntronicPVT1-0.002
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.002
125643541212:56435412:G:Ars705704AOthersRP11-603J24.40.002
1654201901:65420190:T:Crs7553101CIntronicJAK1-0.002
5358745755:35874575:C:Trs6897932TPAVsIL7R-0.002
142358905714:23589057:G:Ars2239633AOthersCEBPE0.002
91136431009:113643100:G:Ars491749AIntronicLPAR10.002
51696908545:169690854:T:Crs452833CIntronicLCP2-0.002
17453188217:4531882:T:Crs17764723COthersALOX15-0.002
6325653316:32565331:A:Crs9270623COthers-0.002
7374004697:37400469:T:Crs16879645CIntronicELMO10.002
156744259615:67442596:C:Trs17293632TIntronicSMAD30.002
51334516835:133451683:C:Ars5742913APAVsTCF70.002
62454666:245466:A:Grs6899887GOthers0.002
4835645364:83564536:G:Ars6812648AIntronicSCD5-0.002
204266028620:42660286:C:Ars2179593AIntronicTOX2-0.002
4386454604:38645460:T:Crs11937257CIntronicAC021860.1, RP11-617D20.10.002
51317975475:131797547:A:Grs6894249GUTRC5orf560.002
1112818688211:128186882:T:Grs10893845GOthers0.002
17457475117:4574751:T:Ars9436APAVsPELP1-0.002
174740280717:47402807:C:Trs12940887TIntronicZNF6520.002
125468588012:54685880:C:Trs35979828TIntronicRP11-968A15.8-0.002
2286863322:28686332:G:Ars1581035AIntronicPLB1-0.002
51504581465:150458146:C:Trs10036748TIntronicTNIP1-0.002
102672745410:26727454:G:Ars2992333AIntronicAPBB1IP-0.002
109448521110:94485211:A:Crs2497306COthers-0.002
156106998815:61069988:C:Trs11071559TIntronicRORA-0.002
168857334716:88573347:G:Trs17700789TIntronicZFPM10.002
51314111385:131411138:C:Trs25881TIntronicCSF20.002
11985443131:198544313:A:Crs10494780COthers-0.002
161124190616:11241906:A:Grs17673553GIntronicCLEC16A-0.002
10810757210:8107572:A:Grs10905279GIntronicGATA3-0.002
31283064183:128306418:T:Crs6772849COthers-0.002
7227882747:22788274:A:Grs7801406GOthersAC073072.6-0.002
41230716084:123071608:G:Ars7691220AOthersKIAA11090.002

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 16859 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References