Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Basophil count


Basophil count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30160/INI30160.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30160/INI30160.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30160/INI30160.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30160/INI30160.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30160/INI30160.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.004[0.003, 0.005]1.1x10-65
white BritishGenotype-only modelR20.015[0.013, 0.017]1.2x10-220
white BritishFull model (covariates and genotypes)R20.019[0.017, 0.021]2.0x10-282
Non-British whiteCovariate-only modelR20.004[-0.001, 0.009]7.8x10-04
Non-British whiteGenotype-only modelR20.018[0.009, 0.028]4.6x10-13
Non-British whiteFull model (covariates and genotypes)R20.022[0.011, 0.032]4.5x10-15
South AsianCovariate-only modelR20.002[-0.002, 0.006]1.1x10-01
South AsianGenotype-only modelR20.006[-0.002, 0.013]5.0x10-03
South AsianFull model (covariates and genotypes)R20.007[-0.001, 0.015]1.8x10-03
AfricanCovariate-only modelR20.005[-0.003, 0.013]1.3x10-02
AfricanGenotype-only modelR20.004[-0.003, 0.012]2.3x10-02
AfricanFull model (covariates and genotypes)R20.010[-0.001, 0.021]7.6x10-04
OthersCovariate-only modelR20.009[0.005, 0.013]5.9x10-17
OthersGenotype-only modelR20.014[0.009, 0.019]1.0x10-24
OthersFull model (covariates and genotypes)R20.021[0.015, 0.028]4.7x10-38

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30160/INI30160.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 4184 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
117294627911:72946279:T:Crs74472890CPAVsP2RY20.003
12361072411:236107241:A:Crs6429432COthersRP5-940F7.20.003
7924083707:92408370:C:Trs445TIntronicCDK6-0.003
193890163319:38901633:C:Trs34377632TPAVsRASGRP40.001
868252958:6825295:G:Ars6996047AOthersDEFA10P0.001
6824633766:82463376:C:Trs915125TOthersFAM46A-0.001
3462506523:46250652:C:Trs3181077TIntronicCCR3-0.001
X147554909X:147554909:G:Ars16994583AOthers0.001
11591753541:159175354:G:Ars12075APAVsDARC0.001
1099014310:990143:C:Trs61833265TOthersRP11-363N22.20.001
159100948415:91009484:G:Ars2074585APAVsIQGAP1-0.001
117294614011:72946140:G:Crs3741156CPAVsP2RY20.001
71430845747:143084574:G:Ars36107836AIntronicZYX0.001
7922436727:92243672:G:Ars42377AUTRCDK60.001
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.001
1983817819:838178:C:Grs62132293GOthersPRTN3-0.001
869041958:6904195:A:Crs6998687COthers0.001
61354982016:135498201:C:Trs1320960TOthersMYB0.001
173817555317:38175553:C:Trs709592TUTRMED240.001
867136958:6713695:C:Trs2980948TIntronicGS1-24F4.20.001
12124342411:212434241:A:Grs903119GOthers-0.001
159096933515:90969335:G:Trs2256388TPAVsIQGAP1-0.001
8229744508:22974450:T:Crs9644063CPAVsTNFRSF10C-0.001
175635539717:56355397:G:Ars28730837APAVsMPO0.001
X147658782X:147658782:A:Crs5936216CIntronicAFF2-0.001
191828594419:18285944:G:Ars11554159APAVsIFI30-0.001
12050838651:205083865:T:Crs11240360CIntronicRBBP5-0.001
193375454819:33754548:C:Trs78744187TOthers-0.001
3469885613:46988561:C:Trs13092573TIntronicCCDC120.001
102674114910:26741149:G:Trs2992261TIntronicAPBB1IP-0.001
51261422605:126142260:C:Trs11748362TIntronicLMNB10.001
868881348:6888134:T:Crs55851618COthersDEFA11P-0.001
7922361647:92236164:T:Crs8179CUTRCDK6-0.001
148840788814:88407888:A:Grs398607GPAVsGALC0.001
7287234077:28723407:G:Ars886816AIntronicCREB50.001
193891276419:38912764:A:Grs892055GPAVsRASGRP40.001
7752687857:75268785:A:Grs13226566GIntronicHIP1-0.000
31283917893:128391789:T:Crs6806687CIntronicRPN10.000
191853364219:18533642:T:Crs7258465CIntronicSSBP40.000
11614797451:161479745:A:Grs1801274GPAVsFCGR2A0.000
156463488415:64634884:C:Ars6494475APAVsCTD-2116N17.10.000
186137757918:61377579:A:Crs1395268CPAVsSERPINB11-0.000
16183350816:1833508:G:Ars72761177APTVsNUBP20.000
1012634291910:126342919:G:Ars3781460AIntronicRP11-12J10.3, FAM53B-0.000
31283164353:128316435:A:Grs4328821GOthers-0.000
6320500676:32050067:T:Crs185819CPAVsTNXB0.000
223820598922:38205989:T:Crs2285178CPAVsGCAT0.000
1464765871:46476587:T:Grs11211247GPAVsMAST2-0.000
3169002243:16900224:A:Crs9822053CIntronicPLCL2-0.000
41034189574:103418957:T:Crs980455COthersNFKB1-0.000
102879323910:28793239:A:Grs2998285GOthers0.000
1111395814211:113958142:GT:Grs35092495GIntronicZBTB160.000
869094418:6909441:C:Trs10867025TOthersDEFA50.000
867896828:6789682:A:Grs2738108GOthersDEFA4, GS1-24F4.30.000
7504185067:50418506:A:Crs7779749CIntronicIKZF10.000
1213953571:21395357:T:Crs10916930CIntronicEIF4G30.000
31874023783:187402378:A:Crs6765474COthers0.000
866902768:6690276:T:Crs2741098COthersXKR50.000
175643610917:56436109:C:Trs34523089TPAVsRNF430.000
191956865919:19568659:T:Crs4808203CIntronicGATAD2A0.000
175994063317:59940633:C:Trs4988340TIntronicBRIP10.000
116885536311:68855363:G:Ars3829241APAVsTPCN20.000
3168941933:16894193:T:Crs2347655CIntronicPLCL2-0.000
173814692917:38146929:T:Crs8066582CIntronicPSMD3-0.000
7287150567:28715056:A:Grs16874653GIntronicCREB50.000
7451041317:45104131:G:Ars11552377APAVsCCM2-0.000
5544100995:54410099:G:Ars444527APAVsCDC20B0.000
175792053217:57920532:A:Grs2645479GOthersVMP1, MIR21, RNU6-450P-0.000
204352852120:43528521:G:Ars6017444AIntronicYWHAB-0.000
51509012615:150901261:C:Trs6650971TPAVsFAT20.000
185177943918:51779439:G:Ars508218AOthers0.000
155024020015:50240200:C:Ars2413983AIntronicATP8B4-0.000
167195805216:71958052:A:Grs7197486GPAVsIST1-0.000
1111896775811:118967758:T:Crs643788CPAVsDPAGT10.000
19856973519:8569735:A:Crs2967603COthersPRAM1-0.000
173819791417:38197914:T:Crs11078936CIntronicMED24-0.000
125787015512:57870155:A:Crs11544238CPAVsARHGAP90.000
204497469620:44974696:T:Grs6017787GOthersSLC35C2-0.000
1311417503813:114175038:G:Ars7319493APAVsTMCO30.000
11503798581:150379858:G:Ars834242AIntronicRPRD20.000
6133118516:13311851:C:Trs2496143TIntronicTBC1D7-0.000
10103489510:1034895:T:Crs17293580CPAVsGTPBP40.000
203038519220:30385192:C:Trs6058463TPAVsTPX2-0.000
4878310924:87831092:G:Ars17751427AIntronicC4orf36-0.000
81265169888:126516988:T:Crs4512391CIntronicRP11-136O12.2-0.000
1176745371:17674537:C:Ars2240335APCVsPADI40.000
2433590612:43359061:C:Ars12466022AOthers-0.000
81289996408:128999640:G:Ars4733812AIntronicPVT1-0.000
51792876225:179287622:G:GTArs1611076GTAPTVsCTC-241N9.10.000
1979581619:795816:G:Ars8113356AOthersPTBP10.000
1091098310:910983:C:Trs10508208TIntronicLARP4B0.000
191644951719:16449517:C:Trs1000329TOthers-0.000
11181088591:118108859:T:Grs4659053GOthers0.000
1238474641:23847464:C:Ars2075995APAVsE2F2-0.000
203692151020:36921510:A:Grs4287822GUTRBPI-0.000
156699015915:66990159:T:Crs7497064COthersSMAD60.000
204353238820:43532388:A:Grs6031860GIntronicYWHAB-0.000
7504176327:50417632:A:Grs62447197GIntronicIKZF10.000
12987368912:9873689:C:Trs2058560TIntronicCLECL10.000
9973691499:97369149:C:Trs1769259TPAVsFBP10.000

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 4184 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References