Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Lymphocyte percentage


Lymphocyte % iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30180/INI30180.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30180/INI30180.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30180/INI30180.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30180/INI30180.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30180/INI30180.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.033[0.031, 0.036]<1.0x10-300
white BritishGenotype-only modelR20.090[0.086, 0.094]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.123[0.119, 0.128]<1.0x10-300
Non-British whiteCovariate-only modelR20.029[0.017, 0.041]1.7x10-19
Non-British whiteGenotype-only modelR20.082[0.063, 0.101]4.4x10-54
Non-British whiteFull model (covariates and genotypes)R20.112[0.090, 0.134]1.9x10-74
South AsianCovariate-only modelR20.021[0.007, 0.036]3.4x10-08
South AsianGenotype-only modelR20.054[0.031, 0.076]8.4x10-19
South AsianFull model (covariates and genotypes)R20.074[0.049, 0.100]1.2x10-25
AfricanCovariate-only modelR20.026[0.008, 0.044]3.9x10-08
AfricanGenotype-only modelR20.047[0.024, 0.070]1.1x10-13
AfricanFull model (covariates and genotypes)R20.069[0.041, 0.096]1.4x10-19
OthersCovariate-only modelR20.074[0.063, 0.085]6.9x10-131
OthersGenotype-only modelR20.111[0.098, 0.124]2.1x10-200
OthersFull model (covariates and genotypes)R20.153[0.139, 0.168]1.1x10-281

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30180/INI30180.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 20804 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
11591746831:159174683:T:Crs2814778CUTRDARC2.446
11591754941:159175494:C:Trs34599082TPAVsDARC0.715
22189999822:218999982:G:Ars55799208APAVsCXCR20.489
7924083707:92408370:C:Trs445TIntronicCDK60.464
632552086HLA-DRB1*0103HLA-DRB1*0103+PAVsHLA-DRB1-0.450
191652783419:16527834:T:Crs4808047CIntronicEPS15L10.353
11017045771:101704577:C:Grs41287280GPAVsS1PR10.318
632552086HLA-DRB1*0101HLA-DRB1*0101+PAVsHLA-DRB10.272
175635650217:56356502:A:Grs56378716GPAVsMPO-0.262
3470458463:47045846:C:Trs2305637TPAVsNBEAL2-0.259
12992311312:9923113:T:Crs724666COthers-0.253
8616601638:61660163:A:Grs11775560GIntronicCHD7-0.231
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.224
191644278219:16442782:C:Trs34006614TOthersKLF2-0.219
1793588271:79358827:G:Trs1968956TPAVsELTD1-0.217
6248065946:24806594:C:Trs9358799TPTVsFAM65B-0.203
8795758048:79575804:T:Crs1021156COthersZC2HC1A-0.202
2436100272:43610027:C:Trs13408002TIntronicTHADA-0.199
7992705397:99270539:C:Trs776746TPTVsCYP3A50.191
4553941724:55394172:C:Trs218237TOthers-0.188
194911635919:49116359:T:Crs447802CPAVsFAM83E0.188
194415310019:44153100:A:Grs4760GPAVsPLAUR0.187
5358762745:35876274:A:Grs3194051GPAVsIL7R0.184
173814354817:38143548:C:Trs4065321TIntronicPSMD30.180
12989950912:9899509:A:Grs4763865GOthers0.170
61080533646:108053364:G:Ars12526696AUTRSCML40.166
7287150567:28715056:A:Grs16874653GIntronicCREB5-0.162
126974401412:69744014:C:Ars1800973APAVsLYZ-0.158
765023677:6502367:T:Crs6796CUTRKDELR20.157
41035570774:103557077:G:Ars2866413APAVsMANBA0.155
173871518617:38715186:T:Crs2228015CPTVsCCR7-0.154
173816687917:38166879:T:Crs8078723COthersCSF3-0.154
1410334204914:103342049:T:Crs1131877CPAVsTRAF30.153
173817084517:38170845:G:Ars2227319AOthersRP11-387H17.60.153
1569062741:56906274:G:Ars7537229AOthers-0.152
6420242856:42024285:G:Ars10948011AIntronicTAF80.150
4749630494:74963049:C:Trs9131TUTRCXCL20.150
191047565219:10475652:C:Ars2304256APAVsTYK20.149
12650213112:6502131:T:Grs2364482GOthersRP1-102E24.80.146
3282966903:28296690:A:Grs17021298GIntronicCMC10.146
21607290052:160729005:C:Trs1397706TPAVsLY75, LY75-CD302-0.144
6147158826:14715882:T:Crs1267499COthers-0.143
4383686354:38368635:T:Grs901705GOthersRP11-83C7.10.142
10609469710:6094697:C:Trs61839660TIntronicIL2RA-0.141
17716335017:7163350:A:Grs1215GUTRCLDN7-0.139
155078499015:50784990:T:Crs146125856CPAVsUSP80.137
4385558854:38555885:G:Ars2381197AOthers-0.133
1369455591:36945559:G:Ars3917925AIntronicCSF3R0.133
137467557313:74675573:T:Crs2104388CIntronicKLF12-0.132
6315066916:31506691:G:Ars2071596APAVsDDX39B-0.131
107237848910:72378489:C:Grs78325861GOthers0.130
194574077119:45740771:C:Trs17356664TIntronicMARK40.129
17137351817:1373518:T:Crs9905106CPAVsMYO1C-0.128
205782930120:57829301:T:Crs259956CPAVsZNF831-0.127
12361072411:236107241:A:Crs6429432COthersRP5-940F7.20.127
31283387483:128338748:T:Crs6782407COthersRPN10.126
137470428713:74704287:C:Trs9600235TIntronicKLF120.126
12650084312:6500843:G:Ars4301834AOthersRP1-102E24.80.126
2254910562:25491056:A:Grs7583409GIntronicDNMT3A0.125
142545948214:25459482:T:Crs2332462CIntronicSTXBP6-0.124
1012646918810:126469188:G:Ars4962698AIntronicMETTL10, RP11-12J10.3-0.122
4383308554:38330855:C:Trs13139166TOthers0.120
19107995919:1079959:G:Ars36084354APAVsHMHA1-0.120
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.119
168926148216:89261482:C:Ars2270416APTVsCDH15-0.119
12991016412:9910164:G:Ars4763879AIntronicCD69-0.119
21823193012:182319301:C:Trs1449263TOthersITGA4-0.118
174406102317:44061023:G:Ars62063786APAVsMAPT-0.118
134120401513:41204015:T:Crs7323267CIntronicFOXO1-0.118
81305863558:130586355:C:Trs12677963TIntronicCCDC26-0.117
191039568319:10395683:A:Grs5498GPAVsICAM1-0.116
7271725717:27172571:G:Ars4719884AIntronicHOXA3, RP1-170O19.22, HOXA-AS3, HOXA-AS20.115
4809333084:80933308:G:Ars7662083AIntronicANTXR2-0.114
7288768887:28876888:T:Crs2190306COthers-0.114
22272914152:227291415:A:Crs11686139COthers0.113
1925542831:92554283:G:Ars34856868APAVsBTBD8-0.113
6879685656:87968565:A:Grs9362415GPAVsZNF2920.112
81264882508:126488250:C:Trs2980869TIntronicRP11-136O12.2-0.112
7282995027:28299502:T:Grs177458GOthers0.111
7922480767:92248076:C:Trs42235TIntronicCDK6-0.111
21821654182:182165418:T:Crs17365327CIntronicAC104820.20.111
5520968895:52096889:C:Ars1499280APAVsPELO-0.110
9915692489:91569248:G:Trs11137467TOthers-0.110
6135253656:13525365:G:Ars2560775AOthersRPS4XP70.110
178099564517:80995645:T:Crs8065396CIntronicB3GNTL10.109
1510171892715:101718927:G:Ars3743193APAVsCHSY1-0.109
1140817411:408174:G:Trs117739035TPAVsSIGIRR-0.109
191415329319:14153293:T:Crs35026308CPAVsIL27RA0.109
8302808338:30280833:G:Ars2979489AIntronicRBPMS-0.109
108104374310:81043743:A:Grs1108618GIntronicZMIZ10.109
159101126215:91011262:A:Grs2238325GIntronicIQGAP10.108
11607935601:160793560:A:Grs509749GPAVsLY90.108
224176713522:41767135:C:Trs4820438TIntronicTEF0.108
6318384906:31838490:C:Trs644774TPAVsSLC44A4-0.107
1112252530811:122525308:T:Grs10892871GOthersUBASH3B0.107
780335187:8033518:A:Crs17566854CIntronicRPA3-AS1, GLCCI10.107
154223531615:42235316:C:Trs11549015TPAVsEHD4-0.107
132862429413:28624294:G:Ars1933437APAVsFLT3-0.106
20193070420:1930704:C:Trs4470399TIntronicRP4-684O24.5-0.104
31283916263:128391626:C:Trs6793907TIntronicRPN10.104

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 20804 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References