Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Monocyte percentage


Monocyte % iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30190/INI30190.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30190/INI30190.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30190/INI30190.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30190/INI30190.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30190/INI30190.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.043[0.040, 0.046]<1.0x10-300
white BritishGenotype-only modelR20.085[0.081, 0.090]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.128[0.123, 0.133]<1.0x10-300
Non-British whiteCovariate-only modelR20.040[0.026, 0.054]1.0x10-26
Non-British whiteGenotype-only modelR20.085[0.066, 0.105]1.7x10-56
Non-British whiteFull model (covariates and genotypes)R20.122[0.100, 0.145]1.6x10-81
South AsianCovariate-only modelR20.083[0.056, 0.110]1.1x10-28
South AsianGenotype-only modelR20.071[0.046, 0.096]1.7x10-24
South AsianFull model (covariates and genotypes)R20.152[0.119, 0.186]4.2x10-53
AfricanCovariate-only modelR20.016[0.002, 0.029]2.1x10-05
AfricanGenotype-only modelR20.018[0.003, 0.032]6.3x10-06
AfricanFull model (covariates and genotypes)R20.034[0.014, 0.054]3.3x10-10
OthersCovariate-only modelR20.039[0.031, 0.048]2.7x10-69
OthersGenotype-only modelR20.056[0.046, 0.066]3.2x10-99
OthersFull model (covariates and genotypes)R20.088[0.076, 0.100]2.7x10-157

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30190/INI30190.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 10717 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
221758675722:17586757:T:Crs140221307CPAVsIL17RA-0.656
132862304813:28623048:T:Crs79490353CIntronicFLT30.359
1925542831:92554283:G:Ars34856868APAVsBTBD80.268
3429061163:42906116:T:Crs2228467CPAVsACKR20.217
21823193012:182319301:C:Trs1449263TOthersITGA40.215
126974401412:69744014:C:Ars1800973APAVsLYZ0.211
91139159059:113915905:T:Crs10980800CIntronicRP11-202G18.10.147
7504176327:50417632:A:Grs62447197GIntronicIKZF1-0.128
168596654816:85966548:A:Grs76121846GOthersRP11-542M13.30.122
168593883516:85938835:G:Ars11646550AIntronicIRF8-0.108
91139116139:113911613:T:Crs7870066CIntronicRP11-202G18.1-0.107
195432731319:54327313:C:Ars34436714APAVsNLRP12-0.102
12650084312:6500843:G:Ars4301834AOthersRP1-102E24.8-0.096
3393071623:39307162:G:Ars3732378APAVsCX3CR10.090
31283064183:128306418:T:Crs6772849COthers0.089
168593303816:85933038:C:Trs2270502TIntronicIRF8-0.088
203119101520:31191015:C:Trs12480732TIntronicRP11-410N8.40.087
7502583137:50258313:C:Trs1870028TOthers-0.086
7503058637:50305863:T:Grs4917014GOthers-0.085
3463992083:46399208:G:Ars1799864APAVsCCR2-0.085
81305975858:130597585:C:Ars2163950AIntronicCCDC26-0.083
51494981515:149498151:G:Ars246394AIntronicPDGFRB-0.082
204895695420:48956954:A:Grs4811031GOthers-0.081
171685218717:16852187:A:Grs34557412GPAVsTNFRSF13B-0.080
158026321715:80263217:C:Trs3826007TPAVsBCL2A1-0.079
168591755116:85917551:T:Crs9937847COthers-0.079
765023677:6502367:T:Crs6796CUTRKDELR20.078
1410384727414:103847274:C:Trs8020912TOthersMARK30.077
142358905714:23589057:G:Ars2239633AOthersCEBPE0.077
175796839817:57968398:AC:Ars143803908APTVsTUBD1-0.073
187407107818:74071078:T:Crs3177609CUTRZNF5160.073
2277309402:27730940:T:Crs1260326CPAVsGCKR0.071
132862429413:28624294:G:Ars1933437APAVsFLT30.069
8616601638:61660163:A:Grs11775560GIntronicCHD7-0.068
194415310019:44153100:A:Grs4760GPAVsPLAUR0.067
204890814020:48908140:C:Trs871750TOthersRP11-290F20.1-0.066
7503044617:50304461:C:Trs1456896TOthers-0.064
168599543616:85995436:T:Crs113646461COthers0.063
6824633766:82463376:C:Trs915125TOthersFAM46A0.063
134121653413:41216534:C:Trs4325427TIntronicFOXO1-0.062
91139583519:113958351:C:Ars2039183AIntronicRP11-202G18.10.061
61444113386:144411338:G:Ars73008259AOthersSF3B50.061
1130561911:305619:T:Crs6421984COthersIFITM2, RP11-326C3.4-0.059
158026340615:80263406:C:Trs1138357TPAVsBCL2A1-0.059
134100302213:41003022:C:Trs9315776TOthers-0.059
191838913519:18389135:A:Grs12608504GOthersKIAA1683, MIR31880.058
81305773828:130577382:T:Grs9649961GIntronicCCDC26-0.058
9914602489:91460248:C:Trs2174057TOthers-0.057
21119314212:111931421:T:Crs726430COthers-0.056
156463488415:64634884:C:Ars6494475APAVsCTD-2116N17.10.055
168594001016:85940010:C:Trs62052556TIntronicIRF8-0.054
21368838232:136883823:C:Trs4954391TOthers-0.054
7922649937:92264993:T:Crs2282979CIntronicCDK6-0.054
1130950811:309508:G:Ars741738AIntronicIFITM2-0.053
21117897912:111789791:A:Grs13012948GIntronicACOXL-0.052
168599170516:85991705:A:Crs11642873COthers0.052
1510171892715:101718927:G:Ars3743193APAVsCHSY1-0.051
17774260117:7742601:G:Ars74480102AOthersKDM6B0.051
3463426353:46342635:G:Ars6803980AOthers-0.050
7504737517:50473751:G:Ars6944602AOthersIKZF10.050
1928302151:92830215:T:Crs114297139CIntronicRPAP2-0.050
91139194699:113919469:G:Trs10217127TIntronicRP11-202G18.1-0.050
81306854578:130685457:T:Grs4295627GIntronicCCDC26-0.049
11509029411:150902941:A:Grs11204744GIntronicSETDB1-0.048
11591746831:159174683:T:Crs2814778CUTRDARC0.048
51482064735:148206473:G:Crs1042714CPAVsADRB20.048
31880876283:188087628:C:Trs9851967TIntronicLPP-0.047
203074299620:30742996:G:Trs1205843TPAVsTM9SF40.047
31283386003:128338600:A:Crs2712381COthersRPN10.047
204889442420:48894424:A:Crs2274950COthersRP11-290F20.30.046
91269763469:126976346:A:Grs4838131GOthers0.046
31283138803:128313880:G:Ars4857857AOthers-0.046
137250530813:72505308:T:Crs1824465COthers0.045
1111395814211:113958142:GT:Grs35092495GIntronicZBTB16-0.045
204283855020:42838550:A:Grs2143606GIntronicOSER10.045
6311252576:31125257:C:Ars72856718APTVsCCHCR1-0.045
156591652715:65916527:A:Trs3743171TPAVsSLC24A1-0.045
6351765476:35176547:C:Trs914547TOthers-0.043
12361072411:236107241:A:Crs6429432COthersRP5-940F7.2-0.043
6419910616:41991061:A:Grs4714552GIntronicCCND3-0.043
12349081701:234908170:C:Trs12028581TOthers0.042
51494817785:149481778:C:Trs7722898TIntronicCSF1R0.042
91139450469:113945046:A:Grs12339649GIntronicRP11-202G18.10.041
6445961216:44596121:T:Crs75492293COthers-0.041
194997939819:49979398:G:Ars17272847APAVsFLT3LG0.040
7450040637:45004063:T:Crs7792760CPAVsMYO1G-0.040
11505717301:150571730:A:Grs2048558GOthersENSA, SNORA40-0.039
168600976016:86009760:C:Ars12232384AOthers0.039
194574077119:45740771:C:Trs17356664TIntronicMARK4-0.039
1112249989511:122499895:A:Grs11607161GOthers0.039
1010127436510:101274365:G:Ars7078219AOthers-0.038
168592781416:85927814:C:Trs391023TOthersIRF8-0.038
168597565916:85975659:C:Trs305061TOthers0.038
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.037
3462997653:46299765:A:Grs7652290GIntronicCCR3-0.037
31412493983:141249398:C:Trs6800122TIntronicRASA2-0.037
21117532282:111753228:C:Ars6542248AIntronicACOXL-0.037
91361492299:136149229:T:Crs505922CIntronicABO-0.037
173813118717:38131187:C:Ars56030650APAVsGSDMA-0.037
175643610917:56436109:C:Trs34523089TPAVsRNF43-0.036

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 10717 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References