Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Eosinophil percentage


Eosinophil % iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30210/INI30210.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30210/INI30210.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30210/INI30210.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30210/INI30210.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30210/INI30210.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.008[0.007, 0.009]3.1x10-116
white BritishGenotype-only modelR20.095[0.090, 0.099]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.102[0.098, 0.107]<1.0x10-300
Non-British whiteCovariate-only modelR20.010[0.003, 0.018]7.4x10-08
Non-British whiteGenotype-only modelR20.059[0.042, 0.076]5.8x10-39
Non-British whiteFull model (covariates and genotypes)R20.069[0.052, 0.087]7.9x10-46
South AsianCovariate-only modelR20.011[0.001, 0.022]5.5x10-05
South AsianGenotype-only modelR20.065[0.041, 0.090]9.1x10-23
South AsianFull model (covariates and genotypes)R20.076[0.050, 0.102]3.3x10-26
AfricanCovariate-only modelR20.020[0.005, 0.036]1.1x10-06
AfricanGenotype-only modelR20.006[-0.003, 0.014]9.9x10-03
AfricanFull model (covariates and genotypes)R20.017[0.003, 0.031]9.2x10-06
OthersCovariate-only modelR20.022[0.016, 0.028]2.1x10-39
OthersGenotype-only modelR20.076[0.065, 0.087]1.3x10-134
OthersFull model (covariates and genotypes)R20.097[0.084, 0.109]7.1x10-173

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30210/INI30210.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 17227 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
17453531417:4535314:G:Ars34210653APAVsALOX15-0.242
31283164353:128316435:A:Grs4328821GOthers-0.174
962559679:6255967:G:Crs146597587CPTVsIL33-0.170
961973929:6197392:T:Crs1888909COthersRP11-575C20.1-0.120
213638780621:36387806:C:Trs2242886TIntronicRUNX1-0.115
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.102
106443120610:64431206:T:Crs12413946CUTRZNF3650.086
6311065016:31106501:C:CCAffx-89026413CCPTVsPSORS1C1-0.073
22138240452:213824045:A:Grs12619285GIntronicAC079610.1-0.070
106439753810:64397538:T:Crs16917546CIntronicZNF365-0.067
191642665719:16426657:A:Grs386869GIntronicCTD-2562J15.6-0.064
186092085418:60920854:C:Trs17758695TIntronicBCL2-0.062
7754427237:75442723:G:Ars11465293APAVsCCL24-0.062
51482064735:148206473:G:Crs1042714CPAVsADRB20.057
22426906752:242690675:G:Ars1106639APAVsD2HGDH-0.055
149441753114:94417531:T:Crs11555542CPAVsASB20.052
21029682092:102968209:TC:TAffx-52334280TPTVsIL1RL1-0.052
1132733411:327334:C:Trs11246068TUTRIFITM3-0.051
191642397919:16423979:G:Ars74366434AIntronicCTD-2562J15.60.049
8616601638:61660163:A:Grs11775560GIntronicCHD7-0.048
21029508222:102950822:A:Crs13019081CIntronicIL1RL1, IL18R10.047
51104018725:110401872:T:Crs1837253COthersTSLP0.047
174406740017:44067400:T:Crs10445337CPAVsMAPT-0.046
4386454604:38645460:T:Crs11937257CIntronicAC021860.1, RP11-617D20.10.046
173793122017:37931220:A:Grs7503018GIntronicIKZF3-0.046
331570513:3157051:C:Trs1153462TIntronicIL5RA-0.046
21029665492:102966549:A:Grs10197862GIntronicIL1RL1, IL18R1-0.046
21119893722:111989372:T:Grs6720394GIntronicMIR4435-1HG0.046
7754427307:75442730:T:Grs2302006GPAVsCCL24-0.045
51316763205:131676320:C:Trs1050152TPAVsSLC22A4-0.045
147597812114:75978121:T:Crs175707COthers0.043
10905313210:9053132:C:Trs962993TOthers-0.042
213643737921:36437379:A:Grs8133412GPAVsRUNX10.041
11985986631:198598663:G:Ars7555082AOthers-0.040
51319522225:131952222:T:Crs6596086CIntronicRAD500.040
1877508531:87750853:A:Grs11161968GOthers0.040
115714622511:57146225:A:Grs34108746GPAVsPRG3-0.039
213671576121:36715761:C:Trs9979383TIntronicRUNX10.039
61074205166:107420516:A:Crs4946811CPAVsBEND3-0.039
7754635057:75463505:A:Grs10755885GOthersAC005102.1-0.038
51415230005:141523000:C:Trs1062158TOthersNDFIP10.038
194021956219:40219562:T:Grs439881GOthersCLC0.038
117629919411:76299194:G:Trs2155219TOthersRP11-672A2.70.037
142358905714:23589057:G:Ars2239633AOthersCEBPE0.037
156744259615:67442596:C:Trs17293632TIntronicSMAD30.037
106455293410:64552934:A:Grs1848797GOthersRP11-436D10.3-0.037
51696908545:169690854:T:Crs452833CIntronicLCP2-0.036
6326297556:32629755:G:Ars1130399APAVsHLA-DQB10.036
62454666:245466:A:Grs6899887GOthers0.036
1130912711:309127:A:Grs1059091GPAVsIFITM20.036
4386636604:38663660:T:Crs12507197CIntronicAC021860.1, RP11-617D20.10.036
61354313186:135431318:T:Crs6920211COthers-0.035
17457475117:4574751:T:Ars9436APAVsPELP1-0.035
3429061163:42906116:T:Crs2228467CPAVsACKR20.035
31884424803:188442480:T:Crs9290877CIntronicLPP0.035
51314132555:131413255:G:Ars27438AOtherssnoZ60.035
19107995919:1079959:G:Ars36084354APAVsHMHA1-0.035
17453188217:4531882:T:Crs17764723COthersALOX15-0.034
331399573:3139957:T:Crs2290610CPAVsIL5RA-0.034
1099014310:990143:C:Trs61833265TOthersRP11-363N22.20.034
22341133012:234113301:C:Trs9247TPAVsINPP5D-0.034
7205059227:20505922:G:Ars10950809AOthers-0.034
22138973082:213897308:C:Trs10932459TIntronicIKZF2-0.034
31283362213:128336221:A:Crs2712429COthersRPN10.034
51320247085:132024708:C:Grs11242122GIntronicAC004237.10.034
9866172659:86617265:A:Grs1982151GPAVsRMI1-0.033
81450977208:145097720:T:Crs79832570CIntronicSPATC10.033
137470428713:74704287:C:Trs9600235TIntronicKLF12-0.032
163010316016:30103160:C:Ars3809627AUTRTBX60.032
2286863322:28686332:G:Ars1581035AIntronicPLB1-0.031
6325653316:32565331:A:Crs9270623COthers-0.031
123213463812:32134638:T:Crs2166807CPAVsKIAA1551-0.031
125643541212:56435412:G:Ars705704AOthersRP11-603J24.40.030
51334516835:133451683:C:Ars5742913APAVsTCF70.030
7917126987:91712698:A:Grs6960867GPAVsAKAP90.030
61444113386:144411338:G:Ars73008259AOthersSF3B50.030
71488950877:148895087:G:Ars12535115AIntronicZNF2820.030
1654201901:65420190:T:Crs7553101CIntronicJAK1-0.030
16283824416:2838244:C:Grs7194680GOthersPRSS33-0.030
51317975475:131797547:A:Grs6894249GUTRC5orf560.030
4386868524:38686852:G:Ars17500787AIntronicKLF3-0.029
166721910716:67219107:G:Crs9939768CPAVsEXOC3L10.029
71387803507:138780350:G:Ars6975036AIntronicZC3HAV10.029
161124190616:11241906:A:Grs17673553GIntronicCLEC16A-0.029
125468588012:54685880:C:Trs35979828TIntronicRP11-968A15.8-0.029
1242019201:24201920:T:Crs2501432CPAVsCNR20.029
3183114123:18311412:G:Ars7641175AIntronicTBC1D50.029
22115405072:211540507:C:Ars1047891APAVsCPS10.028
6906609546:90660954:G:Crs61754114CPAVsBACH20.028
51319012255:131901225:A:Grs2244012GIntronicRAD500.028
223753378622:37533786:C:Grs228957GPAVsIL2RB-0.028
186086778018:60867780:C:Trs12454650TIntronicBCL2-0.028
154365893515:43658935:C:Trs3917221TPTVsZSCAN290.028
129251680712:92516807:C:Trs1013848TIntronicC12orf79-0.028
11727596391:172759639:AT:Ars34236553AIntronicRP1-15D23.2-0.028
9941213309:94121330:G:Ars7020893AIntronicAUH-0.028
31120597683:112059768:C:Grs1131199GPAVsCD200-0.028
134035091213:40350912:T:Crs7993214CIntronicCOG60.028
124881531:2488153:A:Grs4870GPAVsTNFRSF14-0.028
162736434516:27364345:G:Ars3024614AIntronicIL4R0.028

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 17227 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References