Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Basophil percentage


Basophil % iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30220/INI30220.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30220/INI30220.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30220/INI30220.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30220/INI30220.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30220/INI30220.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.002[0.002, 0.003]2.0x10-34
white BritishGenotype-only modelR20.016[0.014, 0.018]5.2x10-229
white BritishFull model (covariates and genotypes)R20.018[0.016, 0.020]9.2x10-258
Non-British whiteCovariate-only modelR20.004[-0.001, 0.008]1.1x10-03
Non-British whiteGenotype-only modelR20.018[0.008, 0.027]1.7x10-12
Non-British whiteFull model (covariates and genotypes)R20.021[0.011, 0.031]1.3x10-14
South AsianCovariate-only modelR20.000[-0.002, 0.002]4.4x10-01
South AsianGenotype-only modelR20.005[-0.002, 0.012]9.4x10-03
South AsianFull model (covariates and genotypes)R20.005[-0.002, 0.012]1.0x10-02
AfricanCovariate-only modelR20.002[-0.003, 0.008]9.2x10-02
AfricanGenotype-only modelR20.002[-0.003, 0.007]1.3x10-01
AfricanFull model (covariates and genotypes)R20.004[-0.003, 0.012]2.5x10-02
OthersCovariate-only modelR20.011[0.007, 0.016]9.3x10-21
OthersGenotype-only modelR20.012[0.008, 0.017]6.4x10-23
OthersFull model (covariates and genotypes)R20.023[0.016, 0.029]7.6x10-41

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30220/INI30220.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 3472 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
117294627911:72946279:T:Crs74472890CPAVsP2RY20.043
12361072411:236107241:A:Crs6429432COthersRP5-940F7.20.041
193890163319:38901633:C:Trs34377632TPAVsRASGRP40.022
7924083707:92408370:C:Trs445TIntronicCDK6-0.021
868252958:6825295:G:Ars6996047AOthersDEFA10P0.017
6824633766:82463376:C:Trs915125TOthersFAM46A-0.014
31283164353:128316435:A:Grs4328821GOthers-0.013
159100948415:91009484:G:Ars2074585APAVsIQGAP1-0.013
3462506523:46250652:C:Trs3181077TIntronicCCR3-0.012
1099014310:990143:C:Trs61833265TOthersRP11-363N22.20.012
1983817819:838178:C:Grs62132293GOthersPRTN3-0.011
X147554909X:147554909:G:Ars16994583AOthers0.011
7922436727:92243672:G:Ars42377AUTRCDK60.010
71430845747:143084574:G:Ars36107836AIntronicZYX0.010
193375454819:33754548:C:Trs78744187TOthers-0.010
117294614011:72946140:G:Crs3741156CPAVsP2RY20.010
11591753541:159175354:G:Ars12075APAVsDARC0.009
12050838651:205083865:T:Crs11240360CIntronicRBBP5-0.009
191828594419:18285944:G:Ars11554159APAVsIFI30-0.009
159096933515:90969335:G:Trs2256388TPAVsIQGAP1-0.009
X147658782X:147658782:A:Crs5936216CIntronicAFF2-0.009
12124342411:212434241:A:Grs903119GOthers-0.009
869041958:6904195:A:Crs6998687COthers0.009
175635539717:56355397:G:Ars28730837APAVsMPO0.008
16183350816:1833508:G:Ars72761177APTVsNUBP20.008
867136958:6713695:C:Trs2980948TIntronicGS1-24F4.20.008
1983181519:831815:GT:Grs372854624GPTVsAZU10.007
7752687857:75268785:A:Grs13226566GIntronicHIP1-0.007
868881348:6888134:T:Crs55851618COthersDEFA11P-0.007
148840788814:88407888:A:Grs398607GPAVsGALC0.007
102674114910:26741149:G:Trs2992261TIntronicAPBB1IP-0.007
11614797451:161479745:A:Grs1801274GPAVsFCGR2A0.006
31283917893:128391789:T:Crs6806687CIntronicRPN10.006
61354982016:135498201:C:Trs1320960TOthersMYB0.006
71488577957:148857795:T:Crs13225884CIntronicZNF3980.006
19856973519:8569735:A:Crs2967603COthersPRAM1-0.006
4879116914:87911691:G:Trs17012234TIntronicAFF1-0.006
51261422605:126142260:C:Trs11748362TIntronicLMNB10.005
193891276419:38912764:A:Grs892055GPAVsRASGRP40.005
866902768:6690276:T:Crs2741098COthersXKR50.005
204353238820:43532388:A:Grs6031860GIntronicYWHAB-0.005
1091098310:910983:C:Trs10508208TIntronicLARP4B0.005
8229744508:22974450:T:Crs9644063CPAVsTNFRSF10C-0.005
11181556201:118155620:G:Ars3767812AIntronicFAM46C-0.005
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.005
117294534111:72945341:C:Trs2511241TPAVsP2RY20.005
155024020015:50240200:C:Ars2413983AIntronicATP8B4-0.005
12358274431:235827443:T:Crs3819013CIntronicLYST-0.005
4749480544:74948054:A:Crs1371794COthersRP11-629B11.40.004
6133118516:13311851:C:Trs2496143TIntronicTBC1D7-0.004
31874091123:187409112:A:Crs955305COthers0.004
31282184103:128218410:G:Ars7629791AIntronicRP11-475N22.40.004
125787015512:57870155:A:Crs11544238CPAVsARHGAP90.004
51509012615:150901261:C:Trs6650971TPAVsFAT20.004
223820598922:38205989:T:Crs2285178CPAVsGCAT0.004
1213953571:21395357:T:Crs10916930CIntronicEIF4G30.004
19440975619:4409756:A:Grs2230636GPAVsCHAF1A0.004
869094418:6909441:C:Trs10867025TOthersDEFA50.004
147581061614:75810616:G:Ars11621420AOthers-0.004
7504185067:50418506:A:Crs7779749CIntronicIKZF10.004
81265169888:126516988:T:Crs4512391CIntronicRP11-136O12.2-0.004
867896828:6789682:A:Grs2738108GOthersDEFA4, GS1-24F4.30.004
3469885613:46988561:C:Trs13092573TIntronicCCDC120.004
2272604692:27260469:G:Ars1124649APAVsTMEM214-0.004
173781408017:37814080:G:Ars1877031APAVsSTARD3-0.004
1979581619:795816:G:Ars8113356AOthersPTBP10.004
1176745371:17674537:C:Ars2240335APCVsPADI40.004
51261612665:126161266:A:Crs3828699CIntronicLMNB10.004
91305616889:130561688:T:Crs12379987CIntronicFPGS-0.004
8616601638:61660163:A:Grs11775560GIntronicCHD7-0.004
213952797121:39527971:A:Grs991015GIntronicDSCR80.004
3503326973:50332697:G:Ars13100173APAVsHYAL3-0.004
755716257:5571625:C:Trs2966449TIntronicACTB-0.004
41034189574:103418957:T:Crs980455COthersNFKB1-0.004
7504176327:50417632:A:Grs62447197GIntronicIKZF10.004
21275873372:127587337:T:Crs10197495COthers-0.004
142358905714:23589057:G:Ars2239633AOthersCEBPE0.004
203038519220:30385192:C:Trs6058463TPAVsTPX2-0.004
11533360181:153336018:C:Grs724781GOthersS100A9-0.004
12050841201:205084120:G:Ars7515178AIntronicRBBP5-0.004
173817555317:38175553:C:Trs709592TUTRMED240.004
866982248:6698224:A:Grs3863728GIntronicGS1-24F4.20.004
1010210452110:102104521:C:Trs735877TIntronicRP11-34D15.2-0.004
109911690310:99116903:C:Trs1048445TPAVsRRP12-0.004
191855027619:18550276:C:Ars10427083AOthersCTD-3137H5.1, ISYNA10.003
1986235519:862355:G:Crs62132300CIntronicCFD0.003
31281548583:128154858:A:Grs1876284GOthers-0.003
3168941933:16894193:T:Crs2347655CIntronicPLCL2-0.003
204497469620:44974696:T:Grs6017787GOthersSLC35C2-0.003
194924421819:49244218:C:CAArs1188333414CAAPTVsIZUMO1-0.003
3731119983:73111998:C:Trs1060584TPAVsEBLN20.003
175994063317:59940633:C:Trs4988340TIntronicBRIP10.003
1111896775811:118967758:T:Crs643788CPAVsDPAGT10.003
175649280017:56492800:T:Crs3744093CPAVsRNF430.003
12124314311:212431431:A:Grs7527863GOthers-0.003
12246243911:224624391:T:Crs6426123CIntronicWDR26, CNIH30.003
2656089092:65608909:C:Trs1876518TIntronicSPRED20.003
116885536311:68855363:G:Ars3829241APAVsTPCN20.003
7503008697:50300869:G:Ars10248090AOthers0.003
21486927762:148692776:T:Crs3768686CUTRORC4-0.003

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 3472 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References