Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Reticulocyte percentage


Reticulocyte % iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30240/INI30240.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30240/INI30240.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30240/INI30240.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30240/INI30240.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30240/INI30240.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.002[0.001, 0.002]4.8x10-23
white BritishGenotype-only modelR20.028[0.026, 0.031]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.030[0.027, 0.032]<1.0x10-300
Non-British whiteCovariate-only modelR20.005[0.000, 0.011]1.1x10-04
Non-British whiteGenotype-only modelR20.069[0.051, 0.086]1.2x10-44
Non-British whiteFull model (covariates and genotypes)R20.075[0.056, 0.093]1.4x10-48
South AsianCovariate-only modelR20.010[0.000, 0.021]1.5x10-04
South AsianGenotype-only modelR20.082[0.055, 0.109]1.1x10-27
South AsianFull model (covariates and genotypes)R20.089[0.061, 0.117]5.5x10-30
AfricanCovariate-only modelR20.000[-0.002, 0.003]4.7x10-01
AfricanGenotype-only modelR20.016[0.002, 0.030]2.4x10-05
AfricanFull model (covariates and genotypes)R20.012[0.000, 0.025]1.8x10-04
OthersCovariate-only modelR20.007[0.003, 0.011]2.3x10-13
OthersGenotype-only modelR20.036[0.028, 0.044]1.1x10-62
OthersFull model (covariates and genotypes)R20.042[0.033, 0.050]8.9x10-72

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30240/INI30240.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 7884 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
8415436758:41543675:G:Ars34664882APAVsANK10.063
12480392941:248039294:G:Ars1339847APAVsTRIM580.060
11586377281:158637728:T:Crs148912436CPAVsSPTA10.047
61398425996:139842599:G:Trs653513TOthers-0.039
5520809095:52080909:T:Crs77704739CIntronicCTD-2288O8.10.039
20415713620:4157136:G:Ars1741317AIntronicSMOX-0.039
8416304058:41630405:G:Ars4737009AIntronicANK1-0.035
61398406936:139840693:A:Crs592423COthers-0.029
191130355419:11303554:A:Grs17616661GPAVsKANK20.027
6260911796:26091179:C:Grs1799945GPAVsHFE0.026
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK5-0.024
102520740310:25207403:A:Crs10828724CIntronicPRTFDC1-0.024
3503524583:50352458:T:Grs9877046GOthersHYAL1-0.023
20417225820:4172258:C:Trs13042073TOthersRP4-779E11.30.022
5520968895:52096889:C:Ars1499280APAVsPELO-0.021
11181647941:118164794:A:Grs10923358GIntronicFAM46C-0.021
X40833508X:40833508:G:Trs5963904TOthers0.021
287502662:8750266:A:Grs3856447GIntronicAC011747.6-0.021
20415594820:4155948:G:Ars1741315AIntronicSMOX-0.020
11585771091:158577109:A:Crs857685CPAVsOR10Z1-0.020
11182542091:118254209:A:Grs11580552GOthers0.019
173388480417:33884804:T:Crs10512472CPAVsSLFN140.019
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.019
11585800691:158580069:C:Trs2479868TOthersSPTA1, OR10Z1-0.019
X153763492X:153763492:T:Crs1050829CPAVsG6PD0.018
1010463799210:104637992:A:Grs10786719GIntronicAS3MT, C10orf32-ASMT-0.018
1212090027412:120900274:C:Trs9040TOthersSRSF9-0.017
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.017
8415072378:41507237:C:Trs7825337TIntronicNKX6-3-0.016
1621264916:212649:C:Trs3785309TIntronicHBM-0.016
20416907920:4169079:G:Ars16989303AOthersRP4-779E11.30.016
1110045660411:100456604:C:Trs11224302TOthers0.015
6301284426:30128442:C:Trs12212092TPAVsTRIM10-0.015
142349427714:23494277:A:Grs8013143GIntronicPSMB5-0.014
173394610717:33946107:A:Grs225245GIntronicAP2B1-0.014
8198197248:19819724:C:Grs328GPTVsLPL-0.013
6259182256:25918225:T:Crs80215559CIntronicSLC17A20.013
5951634495:95163449:G:Ars6556886AOthersGLRX-0.013
174230464417:42304644:G:Ars7222349AOthersRP5-882C2.2, SHC1P20.012
107109988810:71099888:G:Ars10159477AIntronicHK10.012
173388163117:33881631:T:Crs321612CPAVsSLFN14-0.012
6315066916:31506691:G:Ars2071596APAVsDDX39B0.012
X70352417X:70352417:T:Crs10521349CIntronicMED120.012
61354190186:135419018:T:Crs9399137CIntronicHBS1L0.012
3496892103:49689210:G:Ars34762726APAVsBSN-0.012
191725215119:17252151:T:Crs35365035CIntronicMYO9B-0.012
2539645062:53964506:A:Grs10490468GIntronicGPR75-ASB3, ASB30.012
173388030517:33880305:T:Crs79007502CPAVsSLFN140.011
51540598455:154059845:G:Ars13179754AOthers0.011
173387528417:33875284:G:Ars9907259APAVsSLFN140.011
173387128117:33871281:C:Trs11080353TOthersRP11-1094M14.100.011
194937731919:49377319:A:Grs610308GPAVsPPP1R15A0.011
9914018939:91401893:C:Trs9410344TOthers0.011
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.20.010
102519995110:25199951:A:Grs10828722GIntronicPRTFDC1-0.010
20412248520:4122485:G:Ars1764995AIntronicSMOX0.010
177443400317:74434003:C:Trs1000821TIntronicUBE2O0.010
2242456592:24245659:C:Trs17712391TIntronicMFSD2B-0.010
760664507:6066450:T:Crs2640CPAVsEIF2AK10.010
1566148311:56614831:T:Grs1230003GIntronicRP1-158P9.10.010
195553659519:55536595:G:Ars1613662APAVsGP60.010
41448902944:144890294:C:Trs2323418TIntronicRP11-673E1.1, RP11-673E1.40.010
11976956211:9769562:C:Grs415895GPAVsSWAP700.010
31959213113:195921311:G:Ars9325434AOthersZDHHC19-0.010
71343897137:134389713:C:Trs6944563TOthers-0.010
12477197691:247719769:G:Ars56043070APTVsGCSAML0.009
X40861569X:40861569:C:Trs5918084TOthers-0.009
890301608:9030160:G:Ars3748136AOthersRP11-10A14.40.009
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.009
104595888110:45958881:A:Crs2291429CPAVsMARCH80.009
5951634375:95163437:A:Grs17462893GOthersGLRX0.009
225096185422:50961854:T:Crs2782CUTRNCAPH2-0.009
21655130912:165513091:T:Crs10195252CIntronicCOBLL1-0.009
1563285961:56328596:G:Trs4926698TPAVsRP11-90C4.1-0.009
7167235337:16723533:T:Crs10258341CIntronicBZW2-0.009
3243433303:24343330:T:Crs1505307CIntronicTHRB0.009
4553941724:55394172:C:Trs218237TOthers0.009
19116393419:1163934:C:Trs10853952TIntronicSBNO2-0.009
191072803019:10728030:G:Trs8106664TIntronicSLC44A20.008
9800418849:80041884:G:Ars10747015AIntronicGNA140.008
1111658498711:116584987:C:Trs4938303TOthers-0.008
3503578693:50357869:A:Crs709210CPAVsHYAL2-0.008
22186951022:218695102:G:Ars3796028APAVsTNS1-0.008
11123089531:112308953:T:Crs197412CPAVsDDX200.008
61107600086:110760008:A:Grs12210538GPAVsSLC22A160.008
1212086342212:120863422:G:Ars4767891AOthers-0.008
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.008
9920036799:92003679:C:Trs11526468TPAVsSEMA4D-0.008
1620503516:205035:G:Ars2541639AIntronicHBM0.008
173388567217:33885672:C:Trs4516277TOthersSLFN140.008
6301396996:30139699:G:Ars929156APAVsTRIM15-0.008
118582485911:85824859:A:Grs659023GOthers0.007
71162005237:116200523:G:Ars6867AUTRCAV10.007
225072213422:50722134:T:Crs11547731CPAVsPLXNB20.007
129583033812:95830338:C:Trs159853TPTVsRP11-167N24.3-0.007
91371192819:137119281:G:Ars17093638AOthers0.007
91401179689:140117968:A:Grs73565707GOthersC9orf169, RNF224, RNF2080.007
2240494532:24049453:G:Ars2339928AIntronicATAD2B0.007
11181725381:118172538:A:Grs6696923GOthersFAM46C0.007
137116891:3711689:T:Crs6667255CIntronicLRRC470.007

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 7884 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References