Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Reticulocyte count


Reticulocyte count iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30250/INI30250.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30250/INI30250.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30250/INI30250.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30250/INI30250.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30250/INI30250.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.013[0.011, 0.015]4.9x10-186
white BritishGenotype-only modelR20.041[0.038, 0.044]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.054[0.050, 0.057]<1.0x10-300
Non-British whiteCovariate-only modelR20.029[0.017, 0.041]1.4x10-19
Non-British whiteGenotype-only modelR20.071[0.053, 0.089]3.9x10-46
Non-British whiteFull model (covariates and genotypes)R20.101[0.081, 0.122]2.7x10-66
South AsianCovariate-only modelR20.028[0.012, 0.045]2.8x10-10
South AsianGenotype-only modelR20.071[0.046, 0.096]3.7x10-24
South AsianFull model (covariates and genotypes)R20.097[0.069, 0.126]8.7x10-33
AfricanCovariate-only modelR20.012[-0.000, 0.024]2.6x10-04
AfricanGenotype-only modelR20.015[0.001, 0.028]4.8x10-05
AfricanFull model (covariates and genotypes)R20.027[0.009, 0.045]2.9x10-08
OthersCovariate-only modelR20.022[0.015, 0.028]6.9x10-38
OthersGenotype-only modelR20.036[0.028, 0.043]1.5x10-61
OthersFull model (covariates and genotypes)R20.055[0.045, 0.064]1.6x10-94

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30250/INI30250.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 9558 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
8415436758:41543675:G:Ars34664882APAVsANK10.003
12480392941:248039294:G:Ars1339847APAVsTRIM580.003
11586377281:158637728:T:Crs148912436CPAVsSPTA10.003
5520809095:52080909:T:Crs77704739CIntronicCTD-2288O8.10.002
20415713620:4157136:G:Ars1741317AIntronicSMOX-0.002
8416304058:41630405:G:Ars4737009AIntronicANK1-0.002
61398425996:139842599:G:Trs653513TOthers-0.002
191130355419:11303554:A:Grs17616661GPAVsKANK20.001
11585800691:158580069:C:Trs2479868TOthersSPTA1, OR10Z1-0.001
61398406936:139840693:A:Crs592423COthers-0.001
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK5-0.001
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.001
102520740310:25207403:A:Crs10828724CIntronicPRTFDC1-0.001
20417225820:4172258:C:Trs13042073TOthersRP4-779E11.30.001
5520968895:52096889:C:Ars1499280APAVsPELO-0.001
6260911796:26091179:C:Grs1799945GPAVsHFE0.001
X40833508X:40833508:G:Trs5963904TOthers0.001
3503524583:50352458:T:Grs9877046GOthersHYAL1-0.001
287502662:8750266:A:Grs3856447GIntronicAC011747.6-0.001
11181647941:118164794:A:Grs10923358GIntronicFAM46C-0.001
173388480417:33884804:T:Crs10512472CPAVsSLFN140.001
11182542091:118254209:A:Grs11580552GOthers0.001
8415072378:41507237:C:Trs7825337TIntronicNKX6-3-0.001
173388030517:33880305:T:Crs79007502CPAVsSLFN140.001
1212090027412:120900274:C:Trs9040TOthersSRSF9-0.001
1010463799210:104637992:A:Grs10786719GIntronicAS3MT, C10orf32-ASMT-0.001
1110045660411:100456604:C:Trs11224302TOthers0.001
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.001
6301284426:30128442:C:Trs12212092TPAVsTRIM10-0.001
20415594820:4155948:G:Ars1741315AIntronicSMOX-0.001
20416907920:4169079:G:Ars16989303AOthersRP4-779E11.30.001
8198197248:19819724:C:Grs328GPTVsLPL-0.001
11585771091:158577109:A:Crs857685CPAVsOR10Z1-0.001
51540598455:154059845:G:Ars13179754AOthers0.001
174230464417:42304644:G:Ars7222349AOthersRP5-882C2.2, SHC1P20.001
6315066916:31506691:G:Ars2071596APAVsDDX39B0.001
1621264916:212649:C:Trs3785309TIntronicHBM-0.001
5951634495:95163449:G:Ars6556886AOthersGLRX-0.001
71343897137:134389713:C:Trs6944563TOthers-0.001
107109339210:71093392:C:Trs16926246TIntronicHK10.001
6419052756:41905275:G:Ars3218097AIntronicCCND30.001
191725215119:17252151:T:Crs35365035CIntronicMYO9B-0.001
3496892103:49689210:G:Ars34762726APAVsBSN-0.001
1566148311:56614831:T:Grs1230003GIntronicRP1-158P9.10.001
760664507:6066450:T:Crs2640CPAVsEIF2AK10.001
2539645062:53964506:A:Grs10490468GIntronicGPR75-ASB3, ASB30.001
177443400317:74434003:C:Trs1000821TIntronicUBE2O0.001
X70352417X:70352417:T:Crs10521349CIntronicMED120.001
205759797020:57597970:A:Crs463312CPAVsTUBB10.001
6419253046:41925304:G:Ars11968166AIntronicCCND3-0.001
142349427714:23494277:A:Grs8013143GIntronicPSMB5-0.001
20412248520:4122485:G:Ars1764995AIntronicSMOX0.001
173394610717:33946107:A:Grs225245GIntronicAP2B1-0.001
173387528417:33875284:G:Ars9907259APAVsSLFN140.001
12477197691:247719769:G:Ars56043070APTVsGCSAML0.001
173387128117:33871281:C:Trs11080353TOthersRP11-1094M14.100.001
225096185422:50961854:T:Crs2782CUTRNCAPH2-0.001
194937731919:49377319:A:Grs610308GPAVsPPP1R15A0.001
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.20.001
102519995110:25199951:A:Grs10828722GIntronicPRTFDC1-0.001
890301608:9030160:G:Ars3748136AOthersRP11-10A14.40.000
9914018939:91401893:C:Trs9410344TOthers0.000
107109988810:71099888:G:Ars10159477AIntronicHK10.000
5759969095:75996909:G:Ars34592828APAVsIQGAP20.000
136919971:3691997:AGTCAGCCTAGGGGCTGT:Ars566629828APTVsSMIM1-0.000
X40861569X:40861569:C:Trs5918084TOthers-0.000
205598307320:55983073:C:Trs11546710TUTRRBM380.000
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.000
6301261776:30126177:G:Ars61735038APAVsTRIM10-0.000
11976956211:9769562:C:Grs415895GPAVsSWAP700.000
2240494532:24049453:G:Ars2339928AIntronicATAD2B0.000
19116393419:1163934:C:Trs10853952TIntronicSBNO2-0.000
6301214606:30121460:C:Trs2022065TUTRTRIM10-0.000
22200814162:220081416:G:Ars57467915APAVsABCB60.000
11123089531:112308953:T:Crs197412CPAVsDDX200.000
174406740017:44067400:T:Crs10445337CPAVsMAPT0.000
157856603915:78566039:T:Crs11856774CIntronicDNAJA4-0.000
1563285961:56328596:G:Trs4926698TPAVsRP11-90C4.1-0.000
41460363884:146036388:G:Ars34149094AIntronicOTUD4, ABCE10.000
41448902944:144890294:C:Trs2323418TIntronicRP11-673E1.1, RP11-673E1.40.000
137116891:3711689:T:Crs6667255CIntronicLRRC470.000
1209157011:20915701:A:Crs2072671CPAVsCDA-0.000
118582485911:85824859:A:Grs659023GOthers0.000
X153763492X:153763492:T:Crs1050829CPAVsG6PD0.000
21655130912:165513091:T:Crs10195252CIntronicCOBLL1-0.000
1620503516:205035:G:Ars2541639AIntronicHBM0.000
174227884117:42278841:A:Grs9303601GIntronicCTB-175E5.70.000
6474450176:47445017:C:Trs1004173TOthersRP11-385F7.10.000
91361548679:136154867:G:Trs495828TOthersABO-0.000
168885372916:88853729:C:Trs837763TOthersPIEZO1-0.000
191731678219:17316782:T:Crs7248508CPAVsMYO9B-0.000
3464500723:46450072:G:Ars6441977APAVsCCRL20.000
1111658498711:116584987:C:Trs4938303TOthers-0.000
177839600417:78396004:A:Grs41298712GPTVsENDOV0.000
71162005237:116200523:G:Ars6867AUTRCAV10.000
51324441285:132444128:G:Ars72801474AOthersRP11-485M7.3, HSPA40.000
9800418849:80041884:G:Ars10747015AIntronicGNA140.000
1257173651:25717365:C:Grs609320GPAVsRHCE-0.000
91371192819:137119281:G:Ars17093638AOthers0.000
195553659519:55536595:G:Ars1613662APAVsGP60.000

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 9558 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References