Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Mean reticulocyte volume


Mean reticulocyte vol. iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30260/INI30260.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30260/INI30260.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30260/INI30260.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30260/INI30260.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30260/INI30260.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.016[0.014, 0.018]3.6x10-225
white BritishGenotype-only modelR20.146[0.141, 0.151]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.161[0.156, 0.166]<1.0x10-300
Non-British whiteCovariate-only modelR20.029[0.017, 0.041]1.1x10-19
Non-British whiteGenotype-only modelR20.144[0.120, 0.168]1.1x10-95
Non-British whiteFull model (covariates and genotypes)R20.172[0.147, 0.197]1.2x10-115
South AsianCovariate-only modelR20.034[0.016, 0.052]4.5x10-12
South AsianGenotype-only modelR20.110[0.080, 0.140]3.5x10-37
South AsianFull model (covariates and genotypes)R20.138[0.105, 0.170]1.1x10-46
AfricanCovariate-only modelR20.006[-0.003, 0.014]1.1x10-02
AfricanGenotype-only modelR20.033[0.014, 0.053]6.4x10-10
AfricanFull model (covariates and genotypes)R20.039[0.018, 0.060]3.0x10-11
OthersCovariate-only modelR20.036[0.028, 0.044]1.2x10-62
OthersGenotype-only modelR20.130[0.117, 0.144]2.7x10-232
OthersFull model (covariates and genotypes)R20.155[0.141, 0.170]2.8x10-279

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30260/INI30260.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 18832 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
11586377281:158637728:T:Crs148912436CPAVsSPTA1-1.347
8415436758:41543675:G:Ars34664882APAVsANK1-1.313
8416304058:41630405:G:Ars4737009AIntronicANK10.793
7504284457:50428445:T:Crs12718598CIntronicIKZF10.644
61398425996:139842599:G:Trs653513TOthers-0.618
61398406936:139840693:A:Crs592423COthers-0.605
4553941724:55394172:C:Trs218237TOthers0.558
193375454819:33754548:C:Trs78744187TOthers-0.557
12480394511:248039451:C:Trs3811444TPAVsTRIM58-0.498
11585800691:158580069:C:Trs2479868TOthersSPTA1, OR10Z10.489
205598980820:55989808:C:Trs99595TOthers0.445
31422953683:142295368:C:Ars6782400AIntronicATR-0.433
287502662:8750266:A:Grs3856447GIntronicAC011747.60.420
6420104206:42010420:C:Grs12200388GIntronicCCND3-0.418
146526746914:65267469:T:Crs230703CPAVsSPTB0.416
61354190186:135419018:T:Crs9399137CIntronicHBS1L0.414
6419251596:41925159:G:Ars9349205AIntronicCCND3-0.403
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK50.399
225097126622:50971266:T:Crs140522COthersTYMP, ODF3B0.375
11585771091:158577109:A:Crs857685CPAVsOR10Z10.342
948568779:4856877:G:Ars10758658AIntronicRCL1-0.328
41450261264:145026126:C:Trs11735662TIntronicGYPB, RP11-673E1.4-0.323
41460551174:146055117:T:Crs11545157CUTROTUD4-0.317
12433021512:4330215:C:Trs4573764TOthers0.312
91007401249:100740124:C:Trs4743150TOthers-0.310
6419212416:41921241:G:Trs10947997TIntronicCCND30.302
12032733661:203273366:A:Grs4971234GIntronicLINC011360.296
2606216432:60621643:G:Trs243067TOthersAC007381.20.263
6418776716:41877671:G:Ars114056237AIntronicMED200.263
186092085418:60920854:C:Trs17758695TIntronicBCL20.262
184383370118:43833701:T:TCTGrs34068795TCTGPAVsC18orf25-0.245
6420172866:42017286:T:Crs12210681CIntronicCCND30.241
111626372711:16263727:T:Grs11023888GIntronicSOX60.240
21121679312:112167931:T:Crs62160676CIntronicMIR4435-1HG0.238
1434153461:43415346:G:Trs710220TIntronicSLC2A10.235
6419252906:41925290:T:Ars11970772AIntronicCCND30.233
11585804771:158580477:A:Grs12128171GOthersSPTA1, OR10Z1-0.232
1111896775811:118967758:T:Crs643788CPAVsDPAGT1-0.231
8218666628:21866662:T:Crs10503716COthersXPO70.227
119488663211:94886632:T:Crs496321CIntronicRP11-712B9.2-0.223
191299945819:12999458:C:Trs8110787TOthersKLF1, GCDH0.220
168788649016:87886490:C:Trs68149176TIntronicSLC7A50.220
6418480616:41848061:C:Trs34718512TIntronicUSP49-0.216
107109988810:71099888:G:Ars10159477AIntronicHK10.211
X153763492X:153763492:T:Crs1050829CPAVsG6PD0.210
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.2-0.209
206253074620:62530746:C:Trs4809244TIntronicDNAJC50.207
108080287810:80802878:C:Trs1437803TIntronicZMIZ1-AS10.205
21122785392:112278539:G:Ars61033544AOthers0.205
7504171777:50417177:T:Crs118050676CIntronicIKZF1-0.199
11724109671:172410967:G:Ars1063412APAVsPIGC0.198
163010316016:30103160:C:Ars3809627AUTRTBX6-0.198
1212116351812:121163518:C:Ars2239760AOthersRP11-173P15.5, ACADS-0.198
8198135298:19813529:A:Grs268GPAVsLPL-0.195
3243508113:24350811:A:Grs9310736GIntronicTHRB0.193
137605279013:76052790:G:Ars9565165AIntronicTBC1D4-0.192
1212218631712:122186317:G:Ars28655666APAVsTMEM120B-0.191
61354313186:135431318:T:Crs6920211COthers0.188
6416811836:41681183:G:Ars17794619AIntronicTFEB0.188
61093235196:109323519:G:Trs2273668TPAVsSESN1-0.187
6531845086:53184508:T:Crs7747926CIntronicELOVL5-0.186
3169291093:16929109:T:Crs6788010CIntronicPLCL2-0.186
203038519220:30385192:C:Trs6058463TPAVsTPX20.185
1476932201:47693220:A:Grs11211480GOthersRP1-18D14.70.184
8415664388:41566438:C:Trs2304877TPAVsANK1-0.183
125714606912:57146069:T:Grs2277339GPAVsPRIM10.182
111923957911:19239579:G:Ars4757773AIntronicRP11-428C19.40.182
61398384196:139838419:C:Ars628751AOthers-0.180
61114651456:111465145:C:Trs7767302TIntronicSLC16A10-0.177
61644633556:164463355:G:Ars4709819AOthers-0.177
8488854368:48885436:T:Ars762679APAVsMCM40.177
3503524583:50352458:T:Grs9877046GOthersHYAL10.175
12709019312:7090193:A:Grs1984564GPAVsLPCAT3-0.174
156954833815:69548338:A:Grs12440300GPTVsGLCE0.173
113391356811:33913568:T:Crs2273799CUTRLMO20.172
12032719301:203271930:G:Trs12136280TIntronicLINC01136-0.171
166751694516:67516945:C:Trs5030980TPAVsAGRP-0.171
177612186417:76121864:A:Grs2748427GPAVsTMC6-0.169
6909731596:90973159:C:Ars1847472AIntronicBACH20.168
19440975619:4409756:A:Grs2230636GPAVsCHAF1A-0.167
125375783112:53757831:A:Grs12582170GOthers0.167
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.165
11724313861:172431386:G:Ars41310899APTVsC1orf105-0.162
174406102317:44061023:G:Ars62063786APAVsMAPT-0.161
21742191352:174219135:G:Ars920112AIntronicAC092573.20.161
6419809376:41980937:G:Crs56056026CIntronicCCND3-0.160
12113928631:211392863:T:Crs12071464COthers0.160
6419052756:41905275:G:Ars3218097AIntronicCCND3-0.159
11799895841:179989584:G:Crs6692219CPAVsCEP350-0.159
8416638968:41663896:A:Grs10103618GIntronicANK10.156
1209157011:20915701:A:Crs2072671CPAVsCDA0.155
174230570617:42305706:A:Grs9906669GOthersRP5-882C2.2, SHC1P2-0.153
7802988877:80298887:T:Crs3211932CIntronicCD360.153
1238493461:23849346:C:Trs1555027TIntronicE2F2-0.152
121312826312:13128263:C:Grs1941GPAVsHEBP1-0.151
122133154912:21331549:T:Crs4149056CPAVsSLCO1B1-0.150
193374481619:33744816:G:Ars11670517AOthers-0.150
11985910771:198591077:G:Ars16843476AOthers0.150
12033019651:203301965:C:Ars12040268AOthers-0.148
91159501149:115950114:C:Trs45559933TPAVsFKBP15-0.148

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 18832 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References