Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Mean sphered cell volume


Mean sphered cell vol. iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30270/INI30270.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30270/INI30270.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30270/INI30270.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30270/INI30270.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30270/INI30270.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.012[0.011, 0.014]2.7x10-175
white BritishGenotype-only modelR20.153[0.148, 0.158]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.164[0.159, 0.169]<1.0x10-300
Non-British whiteCovariate-only modelR20.024[0.013, 0.035]2.1x10-16
Non-British whiteGenotype-only modelR20.155[0.131, 0.180]1.2x10-103
Non-British whiteFull model (covariates and genotypes)R20.179[0.154, 0.204]1.8x10-120
South AsianCovariate-only modelR20.017[0.004, 0.030]1.2x10-06
South AsianGenotype-only modelR20.103[0.074, 0.132]1.2x10-34
South AsianFull model (covariates and genotypes)R20.116[0.086, 0.147]3.7x10-39
AfricanCovariate-only modelR20.002[-0.003, 0.007]1.5x10-01
AfricanGenotype-only modelR20.033[0.013, 0.052]9.4x10-10
AfricanFull model (covariates and genotypes)R20.034[0.014, 0.054]5.7x10-10
OthersCovariate-only modelR20.039[0.030, 0.047]6.8x10-67
OthersGenotype-only modelR20.137[0.123, 0.151]6.6x10-245
OthersFull model (covariates and genotypes)R20.164[0.149, 0.178]7.3x10-296

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30270/INI30270.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 21558 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
11586377281:158637728:T:Crs148912436CPAVsSPTA1-1.233
8415436758:41543675:G:Ars34664882APAVsANK1-0.948
8416304058:41630405:G:Ars4737009AIntronicANK10.635
X153763492X:153763492:T:Crs1050829CPAVsG6PD0.519
61398425996:139842599:G:Trs653513TOthers-0.471
61398406936:139840693:A:Crs592423COthers-0.423
4553941724:55394172:C:Trs218237TOthers0.389
7504284457:50428445:T:Crs12718598CIntronicIKZF10.377
6259182256:25918225:T:Crs80215559CIntronicSLC17A20.377
193375454819:33754548:C:Trs78744187TOthers-0.328
146526746914:65267469:T:Crs230703CPAVsSPTB0.305
11585800691:158580069:C:Trs2479868TOthersSPTA1, OR10Z10.299
11585771091:158577109:A:Crs857685CPAVsOR10Z10.291
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK50.280
6420104206:42010420:C:Grs12200388GIntronicCCND3-0.273
6260911796:26091179:C:Grs1799945GPAVsHFE0.256
12480394511:248039451:C:Trs3811444TPAVsTRIM58-0.251
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.234
61354190186:135419018:T:Crs9399137CIntronicHBS1L0.229
31422953683:142295368:C:Ars6782400AIntronicATR-0.229
205598980820:55989808:C:Trs99595TOthers0.224
41460551174:146055117:T:Crs11545157CUTROTUD4-0.210
287502662:8750266:A:Grs3856447GIntronicAC011747.60.204
1110045660411:100456604:C:Trs11224302TOthers-0.204
107109988810:71099888:G:Ars10159477AIntronicHK10.202
1258181821:25818182:T:Crs115340137CIntronicTMEM57-0.200
8198135298:19813529:A:Grs268GPAVsLPL-0.199
948568779:4856877:G:Ars10758658AIntronicRCL1-0.198
12032733661:203273366:A:Grs4971234GIntronicLINC011360.196
6419251596:41925159:G:Ars9349205AIntronicCCND3-0.196
177612186417:76121864:A:Grs2748427GPAVsTMC6-0.194
6418776716:41877671:G:Ars114056237AIntronicMED200.191
12433021512:4330215:C:Trs4573764TOthers0.189
191299945819:12999458:C:Trs8110787TOthersKLF1, GCDH0.179
91007401249:100740124:C:Trs4743150TOthers-0.178
225097126622:50971266:T:Crs140522COthersTYMP, ODF3B0.176
8416638968:41663896:A:Grs10103618GIntronicANK10.172
184383370118:43833701:T:TCTGrs34068795TCTGPAVsC18orf25-0.172
11585804771:158580477:A:Grs12128171GOthersSPTA1, OR10Z1-0.171
21121679312:112167931:T:Crs62160676CIntronicMIR4435-1HG0.169
1255729841:25572984:T:Grs34484514GPAVsC1orf630.164
125714606912:57146069:T:Grs2277339GPAVsPRIM10.160
1255700811:25570081:T:Crs1043879CPAVsC1orf630.158
8415664388:41566438:C:Trs2304877TPAVsANK1-0.157
1434153461:43415346:G:Trs710220TIntronicSLC2A10.150
6419052756:41905275:G:Ars3218097AIntronicCCND3-0.145
91159501149:115950114:C:Trs45559933TPAVsFKBP15-0.145
6420172866:42017286:T:Crs12210681CIntronicCCND30.144
125468588012:54685880:C:Trs35979828TIntronicRP11-968A15.80.144
6419253046:41925304:G:Ars11968166AIntronicCCND30.144
71234112237:123411223:A:Crs4731120COthers-0.142
71002402967:100240296:A:Grs2075672GIntronicTFR20.141
168788649016:87886490:C:Trs68149176TIntronicSLC7A50.141
17490198217:4901982:C:Trs11658587TIntronicKIF1C-0.141
9914018939:91401893:C:Trs9410344TOthers-0.139
6419212416:41921241:G:Trs10947997TIntronicCCND30.138
125375783112:53757831:A:Grs12582170GOthers0.136
1255836101:25583610:C:Grs72660908GIntronicC1orf63-0.134
61354313186:135431318:T:Crs6920211COthers0.134
6315066916:31506691:G:Ars2071596APAVsDDX39B-0.133
191725215119:17252151:T:Crs35365035CIntronicMYO9B0.133
19105649219:1056492:G:Crs3752246CPAVsABCA7-0.132
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.2-0.131
174230027817:42300278:C:Trs10208TOthersRP5-882C2.2-0.130
9915692489:91569248:G:Trs11137467TOthers-0.129
174406102317:44061023:G:Ars62063786APAVsMAPT-0.129
6418480616:41848061:C:Trs34718512TIntronicUSP49-0.127
3243508113:24350811:A:Grs9310736GIntronicTHRB0.127
19436621919:4366219:A:Grs732716GIntronicSH3GL1-0.125
6419252906:41925290:T:Ars11970772AIntronicCCND30.123
122133154912:21331549:T:Crs4149056CPAVsSLCO1B1-0.121
163010316016:30103160:C:Ars3809627AUTRTBX6-0.120
6419155196:41915519:G:Ars6934551AIntronicCCND30.120
21122785392:112278539:G:Ars61033544AOthers0.120
8198197248:19819724:C:Grs328GPTVsLPL0.120
61093235196:109323519:G:Trs2273668TPAVsSESN1-0.120
1212095557812:120955578:C:Ars11065147AIntronicCOQ5-0.118
11985455521:198545552:T:Grs1080976GOthers0.118
136919971:3691997:AGTCAGCCTAGGGGCTGT:Ars566629828APTVsSMIM10.117
11976956211:9769562:C:Grs415895GPAVsSWAP70-0.117
81451129838:145112983:C:Trs55916375TPAVsOPLAH0.117
171685218717:16852187:A:Grs34557412GPAVsTNFRSF13B-0.115
21742191352:174219135:G:Ars920112AIntronicAC092573.20.115
7992693977:99269397:T:Crs6977165CPTVsCYP3A50.114
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.114
166721910716:67219107:G:Crs9939768CPAVsEXOC3L10.113
2277309402:27730940:T:Crs1260326CPAVsGCKR0.113
1209157011:20915701:A:Crs2072671CPAVsCDA0.111
12033019651:203301965:C:Ars12040268AOthers-0.111
119488663211:94886632:T:Crs496321CIntronicRP11-712B9.2-0.110
222198289222:21982892:C:Trs2298428TPAVsYDJC-0.110
4553943234:55394323:A:Grs10488853GOthers0.109
8415072378:41507237:C:Trs7825337TIntronicNKX6-30.108
6416811836:41681183:G:Ars17794619AIntronicTFEB0.107
19440975619:4409756:A:Grs2230636GPAVsCHAF1A-0.107
31959213113:195921311:G:Ars9325434AOthersZDHHC19-0.107
1212116351812:121163518:C:Ars2239760AOthersRP11-173P15.5, ACADS-0.106
146524981514:65249815:C:Trs6573568TIntronicSPTB-0.104
186092085418:60920854:C:Trs17758695TIntronicBCL20.103
7504171777:50417177:T:Crs118050676CIntronicIKZF1-0.103

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 21558 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References