Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Immature reticulocyte fraction


Immature reticulocyte frac. iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30280/INI30280.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30280/INI30280.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30280/INI30280.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30280/INI30280.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30280/INI30280.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.011[0.009, 0.013]1.6x10-157
white BritishGenotype-only modelR20.093[0.089, 0.097]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.103[0.099, 0.108]<1.0x10-300
Non-British whiteCovariate-only modelR20.006[0.000, 0.012]4.6x10-05
Non-British whiteGenotype-only modelR20.094[0.074, 0.114]2.4x10-61
Non-British whiteFull model (covariates and genotypes)R20.098[0.077, 0.119]5.9x10-64
South AsianCovariate-only modelR20.010[0.000, 0.021]1.3x10-04
South AsianGenotype-only modelR20.054[0.032, 0.076]1.4x10-18
South AsianFull model (covariates and genotypes)R20.061[0.037, 0.084]9.3x10-21
AfricanCovariate-only modelR20.007[-0.002, 0.016]4.8x10-03
AfricanGenotype-only modelR20.040[0.018, 0.061]1.7x10-11
AfricanFull model (covariates and genotypes)R20.048[0.024, 0.071]1.4x10-13
OthersCovariate-only modelR20.029[0.022, 0.036]6.4x10-50
OthersGenotype-only modelR20.082[0.070, 0.093]1.4x10-142
OthersFull model (covariates and genotypes)R20.109[0.096, 0.122]4.8x10-192

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30280/INI30280.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 16307 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
61398425996:139842599:G:Trs653513TOthers-0.009
191129412019:11294120:T:Crs17678527CIntronicKANK20.009
5520809095:52080909:T:Crs77704739CIntronicCTD-2288O8.10.006
12480394511:248039451:C:Trs3811444TPAVsTRIM580.005
61398406936:139840693:A:Crs592423COthers-0.005
102521824310:25218243:G:Trs10828725TIntronicPRTFDC1-0.004
20415713620:4157136:G:Ars1741317AIntronicSMOX-0.004
20417225820:4172258:C:Trs13042073TOthersRP4-779E11.30.004
6301284426:30128442:C:Trs12212092TPAVsTRIM10-0.004
5520968895:52096889:C:Ars1499280APAVsPELO-0.003
3503524583:50352458:T:Grs9877046GOthersHYAL1-0.003
5520959435:52095943:G:Ars114309882AUTRPELO0.003
X40833508X:40833508:G:Trs5963904TOthers0.002
1458108651:45810865:G:Ars17853159APAVsTESK20.002
172707733117:27077331:A:Grs3181215GUTRTRAF4-0.002
5951634495:95163449:G:Ars6556886AOthersGLRX-0.002
1220380941:22038094:G:Ars1874794AIntronicUSP480.002
106497415610:64974156:T:Crs41274072CPAVsJMJD1C0.002
116397496611:63974966:G:Ars149000560APAVsFERMT3-0.002
20415594820:4155948:G:Ars1741315AIntronicSMOX-0.002
948568779:4856877:G:Ars10758658AIntronicRCL1-0.002
191073174519:10731745:T:Crs8112355CIntronicSLC44A20.002
4553941724:55394172:C:Trs218237TOthers0.002
22186746972:218674697:C:Trs918949TPAVsTNS10.002
1212090211112:120902111:C:Trs1050187TOthersSRSF9-0.002
194541564019:45415640:G:Ars445925AOthersAPOC1-0.002
81166703478:116670347:C:Trs3808477TIntronicTRPS1-0.002
7504284457:50428445:T:Crs12718598CIntronicIKZF10.002
1219885631:21988563:C:Trs829373TIntronicRAP1GAP0.002
146788362414:67883624:A:Crs17248895COthersPLEK2-0.002
104595376710:45953767:A:Grs7908745GPAVsMARCH80.002
21823953452:182395345:G:Ars1143676APAVsITGA4-0.002
51732878515:173287851:G:Ars875741AOthers-0.001
61398384196:139838419:C:Ars628751AOthers-0.001
1563285961:56328596:G:Trs4926698TPAVsRP11-90C4.1-0.001
11724109671:172410967:G:Ars1063412APAVsPIGC0.001
19450544519:4505445:G:Ars16989695AIntronicPLIN4-0.001
6301214606:30121460:C:Trs2022065TUTRTRIM10-0.001
223020076122:30200761:C:Grs28265GPAVsASCC2-0.001
11181424441:118142444:C:Trs10489819TIntronicAL157902.3-0.001
2239340872:23934087:A:Grs7563013GOthersKLHL29-0.001
194706151719:47061517:A:Grs2217672GIntronicAC011551.3, PPP5D10.001
1990150719:901507:A:Grs77971861GPAVsR3HDM4-0.001
287532692:8753269:C:Trs12993630TIntronicAC011747.6-0.001
20412248520:4122485:G:Ars1764995AIntronicSMOX0.001
760664507:6066450:T:Crs2640CPAVsEIF2AK10.001
8415436758:41543675:G:Ars34664882APAVsANK1-0.001
119532098611:95320986:G:Ars11021233AOthers0.001
19448978319:4489783:T:Crs7249084CIntronicHDGFRP2-0.001
1226984471:22698447:A:Grs7524102GOthers-0.001
174006308317:40063083:A:Crs11079024CIntronicACLY0.001
752316287:5231628:G:Ars6463311AIntronicWIPI20.001
205598369520:55983695:T:Crs11546711CUTRRBM380.001
X70352417X:70352417:T:Crs10521349CIntronicMED120.001
20416907920:4169079:G:Ars16989303AOthersRP4-779E11.30.001
172115686017:21156860:C:Trs8067342TOthersC17orf103-0.001
11884490911:8844909:G:Ars7947631AIntronicST50.001
6301263036:30126303:T:Ars61737427APAVsTRIM10-0.001
184331041518:43310415:G:Ars2298720APAVsSLC14A1-0.001
1991752619:917526:A:Grs10407968GPCVsKISS1R-0.001
51262508125:126250812:C:Trs34821177TPAVsMARCH30.001
6474450176:47445017:C:Trs1004173TOthersRP11-385F7.10.001
11182542091:118254209:A:Grs11580552GOthers0.001
177612186417:76121864:A:Grs2748427GPAVsTMC6-0.001
2241482312:24148231:T:Crs963725CIntronicATAD2B-0.001
12480397131:248039713:A:Grs3811445GPCVsTRIM580.001
6301262256:30126225:A:Grs111803166GPAVsTRIM10-0.001
91007401249:100740124:C:Trs4743150TOthers-0.001
1990827419:908274:C:Trs8110921TIntronicR3HDM4-0.001
X40861569X:40861569:C:Trs5918084TOthers-0.001
3496892103:49689210:G:Ars34762726APAVsBSN-0.001
19116393419:1163934:C:Trs10853952TIntronicSBNO2-0.001
91361311889:136131188:C:Trs8176749TOthersABO-0.001
213033912021:30339120:C:Ars34191159APAVsLTN1-0.001
19850334519:8503345:G:Crs34099346CPAVsMARCH20.001
411922434:1192243:A:Grs1250125GIntronicSPON20.001
104611189510:46111895:G:Ars74436700APAVsZFAND40.001
61107600086:110760008:A:Grs12210538GPAVsSLC22A160.001
667035166:6703516:G:Ars12207082AIntronicRP1-80N2.20.001
1212097197812:120971978:G:Ars10774555AIntronicCOQ5, RNF10-0.001
2242456592:24245659:C:Trs17712391TIntronicMFSD2B-0.001
1986919819:869198:C:Trs55639032TIntronicMED16-0.001
177624629417:76246294:C:Trs1567237TIntronicTHA1P-0.001
193566050819:35660508:G:Ars12110APAVsFXYD5-0.001
8262040898:26204089:G:Ars7012604AIntronicPPP2R2A0.001
116540893711:65408937:C:Trs3741378TPAVsSIPA1-0.001
81084008238:108400823:T:Crs1283706CIntronicANGPT1-0.001
1991074219:910742:G:Trs168405TIntronicR3HDM40.001
625073926:2507392:T:Crs879097COthers-0.001
107110072610:71100726:A:Grs16926249GIntronicHK10.001
194574077119:45740771:C:Trs17356664TIntronicMARK40.001
193380254219:33802542:G:Ars7251505AOthersCTD-2540B15.90.001
7990817307:99081730:A:Grs6962772GPAVsZNF789-0.001
193566719219:35667192:G:Ars7255878AOthers0.001
6295557786:29555778:A:Grs2235698GPCVsOR2H20.001
129583033812:95830338:C:Trs159853TPTVsRP11-167N24.3-0.001
81039125148:103912514:C:Trs678839TIntronicKB-1507C5.20.001
11724313861:172431386:G:Ars41310899APTVsC1orf105-0.001
205597571420:55975714:T:Crs6014987CIntronicRBM380.001
2260182272:26018227:A:Grs12987707GIntronicASXL2-0.001

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 16307 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References