Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: High light scatter reticulocyte percentage


High light scatter reticulocyte % iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30290/INI30290.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30290/INI30290.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30290/INI30290.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30290/INI30290.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30290/INI30290.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.001[0.001, 0.002]4.9x10-19
white BritishGenotype-only modelR20.017[0.015, 0.019]4.0x10-246
white BritishFull model (covariates and genotypes)R20.018[0.016, 0.020]1.4x10-262
Non-British whiteCovariate-only modelR20.006[0.000, 0.012]4.3x10-05
Non-British whiteGenotype-only modelR20.099[0.078, 0.119]1.5x10-64
Non-British whiteFull model (covariates and genotypes)R20.105[0.083, 0.126]2.6x10-68
South AsianCovariate-only modelR20.016[0.003, 0.029]2.0x10-06
South AsianGenotype-only modelR20.088[0.060, 0.115]1.5x10-29
South AsianFull model (covariates and genotypes)R20.097[0.069, 0.126]8.1x10-33
AfricanCovariate-only modelR20.000[-0.002, 0.003]4.7x10-01
AfricanGenotype-only modelR20.031[0.012, 0.050]2.7x10-09
AfricanFull model (covariates and genotypes)R20.030[0.011, 0.049]5.3x10-09
OthersCovariate-only modelR20.017[0.012, 0.023]1.6x10-30
OthersGenotype-only modelR20.083[0.071, 0.094]1.7x10-144
OthersFull model (covariates and genotypes)R20.095[0.083, 0.107]5.0x10-166

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30290/INI30290.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 11641 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
61398425996:139842599:G:Trs653513TOthers-0.027
5520809095:52080909:T:Crs77704739CIntronicCTD-2288O8.10.023
12480392941:248039294:G:Ars1339847APAVsTRIM580.019
11586377281:158637728:T:Crs148912436CPAVsSPTA10.018
20415713620:4157136:G:Ars1741317AIntronicSMOX-0.017
191129412019:11294120:T:Crs17678527CIntronicKANK20.016
61398406936:139840693:A:Crs592423COthers-0.016
X153763492X:153763492:T:Crs1050829CPAVsG6PD0.013
8415436758:41543675:G:Ars34664882APAVsANK10.013
5520968895:52096889:C:Ars1499280APAVsPELO-0.012
102521824310:25218243:G:Trs10828725TIntronicPRTFDC1-0.012
3503524583:50352458:T:Grs9877046GOthersHYAL1-0.012
20417225820:4172258:C:Trs13042073TOthersRP4-779E11.30.011
6301284426:30128442:C:Trs12212092TPAVsTRIM10-0.011
8416304058:41630405:G:Ars4737009AIntronicANK1-0.010
20415594820:4155948:G:Ars1741315AIntronicSMOX-0.010
20416907920:4169079:G:Ars16989303AOthersRP4-779E11.30.010
X40833508X:40833508:G:Trs5963904TOthers0.009
1212090027412:120900274:C:Trs9040TOthersSRSF9-0.009
760664507:6066450:T:Crs2640CPAVsEIF2AK10.009
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK5-0.009
12480394511:248039451:C:Trs3811444TPAVsTRIM580.008
5951634495:95163449:G:Ars6556886AOthersGLRX-0.008
6301263036:30126303:T:Ars61737427APAVsTRIM10-0.008
11182542091:118254209:A:Grs11580552GOthers0.007
11585771091:158577109:A:Crs857685CPAVsOR10Z1-0.007
173388480417:33884804:T:Crs10512472CPAVsSLFN140.007
142349427714:23494277:A:Grs8013143GIntronicPSMB5-0.007
5520959435:52095943:G:Ars114309882AUTRPELO0.007
6260911796:26091179:C:Grs1799945GPAVsHFE0.007
1010463799210:104637992:A:Grs10786719GIntronicAS3MT, C10orf32-ASMT-0.007
71343897137:134389713:C:Trs6944563TOthers-0.007
51540560025:154056002:C:Trs13186731TOthers0.007
6301214606:30121460:C:Trs2022065TUTRTRIM10-0.006
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.006
22200814162:220081416:G:Ars57467915APAVsABCB60.006
1563285961:56328596:G:Trs4926698TPAVsRP11-90C4.1-0.006
1458108651:45810865:G:Ars17853159APAVsTESK20.006
2241482312:24148231:T:Crs963725CIntronicATAD2B-0.006
3496892103:49689210:G:Ars34762726APAVsBSN-0.006
1621264916:212649:C:Trs3785309TIntronicHBM-0.006
147423724714:74237247:G:Ars8009224AIntronicELMSAN10.006
X70352417X:70352417:T:Crs10521349CIntronicMED120.005
91401179689:140117968:A:Grs73565707GOthersC9orf169, RNF224, RNF2080.005
5951634375:95163437:A:Grs17462893GOthersGLRX0.005
4553941724:55394172:C:Trs218237TOthers0.005
136919971:3691997:AGTCAGCCTAGGGGCTGT:Ars566629828APTVsSMIM1-0.005
173388163117:33881631:T:Crs321612CPAVsSLFN14-0.005
191073174519:10731745:T:Crs8112355CIntronicSLC44A20.005
41448902944:144890294:C:Trs2323418TIntronicRP11-673E1.1, RP11-673E1.40.005
194541564019:45415640:G:Ars445925AOthersAPOC1-0.005
191130355419:11303554:A:Grs17616661GPAVsKANK20.005
11181545751:118154575:T:Crs67224956CIntronicFAM46C-0.005
51732878515:173287851:G:Ars875741AOthers-0.005
193380254219:33802542:G:Ars7251505AOthersCTD-2540B15.90.005
6315066916:31506691:G:Ars2071596APAVsDDX39B0.005
1566147621:56614762:C:Trs1230004TIntronicRP1-158P9.10.005
8415073508:41507350:C:Trs7825494TIntronicNKX6-3-0.004
20412248520:4122485:G:Ars1764995AIntronicSMOX0.004
1110045660411:100456604:C:Trs11224302TOthers0.004
2239340872:23934087:A:Grs7563013GOthersKLHL29-0.004
287532692:8753269:C:Trs12993630TIntronicAC011747.6-0.004
61107600086:110760008:A:Grs12210538GPAVsSLC22A160.004
6259182256:25918225:T:Crs80215559CIntronicSLC17A20.004
22186746972:218674697:C:Trs918949TPAVsTNS10.004
X40861569X:40861569:C:Trs5918084TOthers-0.004
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.004
102520740310:25207403:A:Crs10828724CIntronicPRTFDC1-0.004
11181424441:118142444:C:Trs10489819TIntronicAL157902.3-0.004
11976956211:9769562:C:Grs415895GPAVsSWAP700.004
1220380941:22038094:G:Ars1874794AIntronicUSP480.004
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.20.004
890301608:9030160:G:Ars3748136AOthersRP11-10A14.40.004
173118463117:31184631:T:Crs17183628CIntronicMYO1D0.004
3243508113:24350811:A:Grs9310736GIntronicTHRB0.004
174006308317:40063083:A:Crs11079024CIntronicACLY0.004
213033912021:30339120:C:Ars34191159APAVsLTN1-0.004
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.004
81166703478:116670347:C:Trs3808477TIntronicTRPS1-0.004
1212086342212:120863422:G:Ars4767891AOthers-0.004
177611929317:76119293:C:Trs3794738TIntronicTMC60.004
1624089516:240895:A:Grs1203956GIntronicLUC7L0.004
129583033812:95830338:C:Trs159853TPTVsRP11-167N24.3-0.004
19116393419:1163934:C:Trs10853952TIntronicSBNO2-0.004
173387240717:33872407:G:Ars11080354AOthersRP11-1094M14.100.004
9338384759:33838475:T:Crs2248910CIntronicUBE2R20.004
107109339210:71093392:C:Trs16926246TIntronicHK10.004
143525915114:35259151:G:Ars4982211AIntronicBAZ1A-0.003
174406740017:44067400:T:Crs10445337CPAVsMAPT0.003
287502662:8750266:A:Grs3856447GIntronicAC011747.6-0.003
11509406251:150940625:T:Grs267738GPAVsCERS20.003
173394610717:33946107:A:Grs225245GIntronicAP2B1-0.003
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.003
1410311355214:103113552:G:Ars714827AIntronicRCOR1-0.003
107110072610:71100726:A:Grs16926249GIntronicHK10.003
205597571420:55975714:T:Crs6014987CIntronicRBM380.003
177612186417:76121864:A:Grs2748427GPAVsTMC6-0.003
1986919819:869198:C:Trs55639032TIntronicMED16-0.003
41446217794:144621779:A:Grs55935372GPAVsFREM3-0.003
195553659519:55536595:G:Ars1613662APAVsGP60.003

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 11641 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References