Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: High light scatter reticulocyte count


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI30300/INI30300.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30300/INI30300.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30300/INI30300.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30300/INI30300.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI30300/INI30300.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.017[0.016, 0.019]3.9x10-250
white BritishGenotype-only modelR20.113[0.109, 0.118]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.131[0.126, 0.135]<1.0x10-300
Non-British whiteCovariate-only modelR20.019[0.009, 0.029]4.0x10-13
Non-British whiteGenotype-only modelR20.122[0.099, 0.144]4.5x10-80
Non-British whiteFull model (covariates and genotypes)R20.141[0.118, 0.165]1.7x10-93
South AsianCovariate-only modelR20.026[0.010, 0.042]1.5x10-09
South AsianGenotype-only modelR20.091[0.063, 0.119]1.2x10-30
South AsianFull model (covariates and genotypes)R20.113[0.082, 0.143]6.1x10-38
AfricanCovariate-only modelR20.007[-0.002, 0.017]3.7x10-03
AfricanGenotype-only modelR20.040[0.019, 0.062]1.1x10-11
AfricanFull model (covariates and genotypes)R20.048[0.024, 0.071]1.3x10-13
OthersCovariate-only modelR20.040[0.031, 0.048]2.6x10-68
OthersGenotype-only modelR20.093[0.081, 0.106]1.6x10-163
OthersFull model (covariates and genotypes)R20.125[0.111, 0.138]3.2x10-221

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI30300/INI30300.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 19565 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
5520809095:52080909:T:Crs77704739CIntronicCTD-2288O8.10.001
11586377281:158637728:T:Crs148912436CPAVsSPTA10.001
61398425996:139842599:G:Trs653513TOthers-0.001
191129412019:11294120:T:Crs17678527CIntronicKANK20.001
12480392941:248039294:G:Ars1339847APAVsTRIM580.001
20415713620:4157136:G:Ars1741317AIntronicSMOX-0.001
11552617091:155261709:G:Ars116100695APAVsPKLR0.001
8415436758:41543675:G:Ars34664882APAVsANK10.001
61398406936:139840693:A:Crs592423COthers-0.001
182105722818:21057228:C:Trs56282762TPAVsRIOK30.001
X153763492X:153763492:T:Crs1050829CPAVsG6PD0.001
102521824310:25218243:G:Trs10828725TIntronicPRTFDC1-0.001
5520968895:52096889:C:Ars1499280APAVsPELO-0.001
5520959435:52095943:G:Ars114309882AUTRPELO0.001
22200814162:220081416:G:Ars57467915APAVsABCB60.001
6301263036:30126303:T:Ars61737427APAVsTRIM10-0.001
20416907920:4169079:G:Ars16989303AOthersRP4-779E11.30.001
8416304058:41630405:G:Ars4737009AIntronicANK1-0.001
6301284426:30128442:C:Trs12212092TPAVsTRIM10-0.001
3503524583:50352458:T:Grs9877046GOthersHYAL1-0.001
X40833508X:40833508:G:Trs5963904TOthers0.000
12480394511:248039451:C:Trs3811444TPAVsTRIM580.000
20417225820:4172258:C:Trs13042073TOthersRP4-779E11.30.000
760664507:6066450:T:Crs2640CPAVsEIF2AK10.000
5951634495:95163449:G:Ars6556886AOthersGLRX-0.000
1212090027412:120900274:C:Trs9040TOthersSRSF9-0.000
11182542091:118254209:A:Grs11580552GOthers0.000
1211233131712:112331317:G:Ars12580246APTVsMAPKAPK5-0.000
20415594820:4155948:G:Ars1741315AIntronicSMOX-0.000
136919971:3691997:AGTCAGCCTAGGGGCTGT:Ars566629828APTVsSMIM1-0.000
1211188460812:111884608:T:Crs3184504CPAVsSH2B3-0.000
51540560025:154056002:C:Trs13186731TOthers0.000
6301214606:30121460:C:Trs2022065TUTRTRIM10-0.000
71343897137:134389713:C:Trs6944563TOthers-0.000
107109339210:71093392:C:Trs16926246TIntronicHK10.000
5759969095:75996909:G:Ars34592828APAVsIQGAP20.000
147423724714:74237247:G:Ars8009224AIntronicELMSAN10.000
287532692:8753269:C:Trs12993630TIntronicAC011747.6-0.000
1621264916:212649:C:Trs3785309TIntronicHBM-0.000
6315066916:31506691:G:Ars2071596APAVsDDX39B0.000
142349427714:23494277:A:Grs8013143GIntronicPSMB5-0.000
6260911796:26091179:C:Grs1799945GPAVsHFE0.000
173388480417:33884804:T:Crs10512472CPAVsSLFN140.000
1110045660411:100456604:C:Trs11224302TOthers0.000
191073174519:10731745:T:Crs8112355CIntronicSLC44A20.000
205598307320:55983073:C:Trs11546710TUTRRBM380.000
194541564019:45415640:G:Ars445925AOthersAPOC1-0.000
3496892103:49689210:G:Ars34762726APAVsBSN-0.000
890301608:9030160:G:Ars3748136AOthersRP11-10A14.40.000
X70352417X:70352417:T:Crs10521349CIntronicMED120.000
193380254219:33802542:G:Ars7251505AOthersCTD-2540B15.90.000
11585800691:158580069:C:Trs2479868TOthersSPTA1, OR10Z1-0.000
1010463799210:104637992:A:Grs10786719GIntronicAS3MT, C10orf32-ASMT-0.000
41448902944:144890294:C:Trs2323418TIntronicRP11-673E1.1, RP11-673E1.40.000
205759797020:57597970:A:Crs463312CPAVsTUBB10.000
1563285961:56328596:G:Trs4926698TPAVsRP11-90C4.1-0.000
51732878515:173287851:G:Ars875741AOthers-0.000
22186746972:218674697:C:Trs918949TPAVsTNS10.000
11181545751:118154575:T:Crs67224956CIntronicFAM46C-0.000
1458108651:45810865:G:Ars17853159APAVsTESK20.000
20412248520:4122485:G:Ars1764995AIntronicSMOX0.000
5951634375:95163437:A:Grs17462893GOthersGLRX0.000
8415072378:41507237:C:Trs7825337TIntronicNKX6-3-0.000
1566147621:56614762:C:Trs1230004TIntronicRP1-158P9.10.000
149484494714:94844947:C:Trs28929474TPAVsSERPINA1-0.000
6259182256:25918225:T:Crs80215559CIntronicSLC17A20.000
11585771091:158577109:A:Crs857685CPAVsOR10Z1-0.000
81166703478:116670347:C:Trs3808477TIntronicTRPS1-0.000
106497415610:64974156:T:Crs41274072CPAVsJMJD1C0.000
1990827419:908274:C:Trs8110921TIntronicR3HDM4-0.000
X40861569X:40861569:C:Trs5918084TOthers-0.000
173387240717:33872407:G:Ars11080354AOthersRP11-1094M14.100.000
11976956211:9769562:C:Grs415895GPAVsSWAP700.000
3502701653:50270165:A:Crs11716295CIntronicGNAI20.000
177443400317:74434003:C:Trs1000821TIntronicUBE2O0.000
174006308317:40063083:A:Crs11079024CIntronicACLY0.000
61353813516:135381351:A:Grs11759077GPTVsCTA-212D2.20.000
1990150719:901507:A:Grs77971861GPAVsR3HDM4-0.000
223746959022:37469590:C:Trs387907018TPAVsTMPRSS60.000
2239340872:23934087:A:Grs7563013GOthersKLHL29-0.000
121990571:2199057:C:Trs11588312TIntronicSKI0.000
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.000
20413584920:4135849:G:Ars1765003AIntronicSMOX0.000
11181556201:118155620:G:Ars3767812AIntronicFAM46C-0.000
191034091219:10340912:A:Grs2288937GIntronicS1PR2, DNMT1-0.000
174406740017:44067400:T:Crs10445337CPAVsMAPT0.000
X40822992X:40822992:G:Ars66512463AOthers0.000
11553104431:155310443:C:Trs12748814TIntronicASH1L0.000
213033912021:30339120:C:Ars34191159APAVsLTN1-0.000
1220380941:22038094:G:Ars1874794AIntronicUSP480.000
2277309402:27730940:T:Crs1260326CPAVsGCKR-0.000
19116393419:1163934:C:Trs10853952TIntronicSBNO2-0.000
173394610717:33946107:A:Grs225245GIntronicAP2B1-0.000
12477197691:247719769:G:Ars56043070APTVsGCSAML0.000
107111284310:71112843:G:Trs10998738TIntronicHK1-0.000
51324441285:132444128:G:Ars72801474AOthersRP11-485M7.3, HSPA40.000
5558618945:55861894:G:Ars9687846AIntronicAC022431.20.000
194937731919:49377319:A:Grs610308GPAVsPPP1R15A0.000
11181725381:118172538:A:Grs6696923GOthersFAM46C0.000
71234245837:123424583:G:Trs725859TOthers0.000

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 19565 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.


References