Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Waist circumference


Waist circumference iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI48/INI48.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI48/INI48.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI48/INI48.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI48/INI48.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI48/INI48.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.231[0.226, 0.237]<1.0x10-300
white BritishGenotype-only modelR20.071[0.067, 0.075]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.299[0.294, 0.305]<1.0x10-300
Non-British whiteCovariate-only modelR20.236[0.209, 0.263]8.4x10-171
Non-British whiteGenotype-only modelR20.074[0.055, 0.092]7.1x10-50
Non-British whiteFull model (covariates and genotypes)R20.299[0.271, 0.326]3.6x10-224
South AsianCovariate-only modelR20.146[0.113, 0.179]1.9x10-52
South AsianGenotype-only modelR20.067[0.043, 0.091]5.6x10-24
South AsianFull model (covariates and genotypes)R20.211[0.175, 0.248]8.3x10-78
AfricanCovariate-only modelR20.018[0.003, 0.033]3.4x10-06
AfricanGenotype-only modelR20.016[0.002, 0.031]8.8x10-06
AfricanFull model (covariates and genotypes)R20.031[0.012, 0.050]8.7x10-10
OthersCovariate-only modelR20.244[0.227, 0.260]<1.0x10-300
OthersGenotype-only modelR20.051[0.041, 0.060]3.2x10-92
OthersFull model (covariates and genotypes)R20.289[0.272, 0.306]<1.0x10-300

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI48/INI48.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 31406 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.649
165380095416:53800954:T:Crs1421085CIntronicFTO0.646
24171672:417167:T:Crs62106258COthersAC105393.2-0.421
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.327
6342143226:34214322:C:Grs1150781GPAVsC6orf1-0.279
11778894801:177889480:A:Grs543874GOthersSEC16B0.269
112767991611:27679916:C:Trs6265TPAVsBDNF-0.260
194756900319:47569003:G:Ars3810291AUTRZC3H40.252
26325502:632550:C:Trs13012571TOthers0.237
24660032:466003:G:Ars62104180AOthers-0.231
51458953945:145895394:G:Ars114285050APTVsGPR151-0.227
185783976918:57839769:C:Ars571312AOthers0.215
185785258718:57852587:T:Crs476828COthers0.208
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.207
4451798834:45179883:C:Trs12641981TOthers0.206
106183198410:61831984:G:Trs11599164TPAVsANK30.206
174625234617:46252346:T:Crs208015CIntronicSKAP1-0.201
142968532814:29685328:G:Ars974471AOthers0.199
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.193
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.193
81382152288:138215228:G:Ars16906845AOthers-0.191
16401346716:4013467:C:Trs2531995TUTRADCY90.190
115463041:1546304:C:Trs11492279TOthersMIB2-0.187
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.187
176583874317:65838743:T:Grs8074078GIntronicBPTF0.184
8734390708:73439070:A:Grs1431659GOthers-0.180
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.177
3499249403:49924940:T:Crs1062633CPAVsMST1R0.176
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.176
41002393194:100239319:T:Crs1229984CPAVsADH1B0.172
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.171
3123931253:12393125:C:Grs1801282GPAVsPPARG0.171
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.166
6403637346:40363734:C:Trs930249TIntronicLRFN2-0.166
31567977023:156797702:G:Ars10049090AOthersRP11-6F2.5-0.165
191941309219:19413092:C:Trs17751061TPAVsSUGP1-0.165
109977240410:99772404:G:Ars563296AIntronicCRTAC10.164
1983488851:98348885:G:Ars1801265APAVsDPYD-0.164
161994436316:19944363:A:Grs11639988GOthers-0.164
204200141820:42001418:A:Crs6017023COthers-0.162
162894439616:28944396:C:Grs2904880GPAVsCD19-0.159
1210861863012:108618630:C:Trs3764002TPAVsWSCD2-0.158
125024746812:50247468:G:Ars7138803AOthers0.158
61088953866:108895386:C:Trs2490272TIntronicFOXO30.157
6537620926:53762092:A:Grs9349688GPAVsLRRC10.156
201581949520:15819495:A:Grs8123881GIntronicMACROD20.154
17184451917:1844519:G:Ars4239060AIntronicRTN4RL1-0.154
26141682:614168:A:Grs2947411GOthers0.153
147994264714:79942647:G:Ars7156625AIntronicNRXN30.153
620721576:2072157:G:Ars12055694AIntronicGMDS0.153
91294522049:129452204:T:Crs13285134CIntronicLMX1B0.152
31362551693:136255169:A:Grs833752GIntronicSTAG10.152
2765547762:76554776:G:Trs10167686TOthers-0.151
5957288985:95728898:C:Grs6235GPAVsPCSK10.150
51039440205:103944020:G:Trs254024TIntronicRP11-6N13.10.149
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.148
1410324647014:103246470:A:Grs3803286GIntronicTRAF3-0.148
162037081016:20370810:C:Trs9652588TPAVsPDILT-0.148
102183010410:21830104:A:Grs11012732GIntronicMLLT100.148
114387669811:43876698:C:Trs11555762TPAVsHSD17B120.148
41027093084:102709308:T:Crs11097755CIntronicBANK10.145
1111895217311:118952173:A:Grs15818GPAVsVPS110.145
165375688516:53756885:A:Grs76488452GIntronicFTO0.143
8563149198:56314919:T:Crs2979062CIntronicXKR4-0.142
6403719186:40371918:C:Trs1579557TIntronicLRFN20.141
174116795717:41167957:C:Ars455055APTVsVAT10.141
31614826453:161482645:G:Trs308690TOthers0.140
112770136511:27701365:G:Ars10835211AIntronicBDNF-AS, BDNF0.140
31413266023:141326602:T:Crs295322CPAVsRASA20.140
1476762331:47676233:A:Grs741959GOthers-0.139
113034273811:30342738:A:Grs1222221GOthersARL14EP-0.139
4413983794:41398379:T:Grs13116757GIntronicLIMCH1-0.139
728018037:2801803:C:Trs798489TPTVsGNA12-0.137
1113460101211:134601012:T:Grs12364470GOthersRP11-469N6.10.136
125442147612:54421476:C:Ars10876528AIntronicRP11-834C11.14, RP11-834C11.12, HOXC4, HOXC60.135
4656549704:65654970:C:Trs11727445TOthers-0.135
19406119019:4061190:C:Trs10414261TIntronicZBTB7A-0.134
12018692571:201869257:G:Ars2820312APAVsLMOD10.134
31707091933:170709193:C:Trs1604038TOthersRNU1-70P, SLC2A20.134
171188135617:11881356:G:Ars117755721APAVsZNF18-0.133
8772282228:77228222:A:Grs1405348GOthers0.132
2251415382:25141538:A:Grs11676272GPAVsADCY30.132
2368114672:36811467:T:Crs848616CIntronicFEZ20.132
146236046414:62360464:A:Grs217671GIntronicCTD-2277K2.10.131
12178049551:217804955:T:Crs10495062CIntronicSPATA170.131
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.130
194542294619:45422946:A:Grs4420638GOthersAPOC1-0.128
12095504611:209550461:T:Crs1006316CIntronicRP11-372M18.20.128
185502733318:55027333:CG:Crs112792874CPTVsST8SIA3-0.128
7751010657:75101065:C:Trs17207196TIntronicPOM121C-0.127
21744726852:174472685:G:Trs515309TOthers-0.127
166962276216:69622762:G:Ars244418AIntronicNFAT5-0.126
17382808617:3828086:C:Grs1043246GPAVsATP2A30.126
12186097021:218609702:A:Grs6684205GIntronicTGFB20.125
191838495019:18384950:T:Grs1075403GIntronicKIAA1683-0.125
221816599522:18165995:T:Grs2587070GPAVsBCL2L130.125
5877129135:87712913:G:Ars6452788AIntronicCTC-498M16.2, TMEM161B-AS1-0.123
107551969110:75519691:C:Ars35972789AIntronicSEC24C-0.123
2354635562:35463556:G:Ars1837452AOthers-0.123
121441048512:14410485:T:Crs17221259COthersGNAI2P1-0.122

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 31406 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References