Power of Inclusion: enhancing polygenic prediction with admixed individuals

Tanigawa and Kellis. Am J Hum Genet. (2023).


Phenotype: Hip circumference


Hip circumference iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


iPGS prediction in the held-out test set individuals

We compared the polygenic prediction from our iPGS model and the phenotype values using the held-out test set individuals in UK Biobank. Note the difference in the number of individuals in the five population groups.

/static/data/tanigawakellis2023/per_trait/INI49/INI49.WB.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI49/INI49.NBW.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI49/INI49.SA.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI49/INI49.Afr.PGS_vs_phe.png
/static/data/tanigawakellis2023/per_trait/INI49/INI49.others.PGS_vs_phe.png

Predictive performance

Population Model Metric Predictive Performance 95% CI P-value
Population Model Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelR20.005[0.004, 0.006]1.1x10-74
white BritishGenotype-only modelR20.103[0.098, 0.107]<1.0x10-300
white BritishFull model (covariates and genotypes)R20.107[0.102, 0.111]<1.0x10-300
Non-British whiteCovariate-only modelR20.001[-0.001, 0.003]1.0x10-01
Non-British whiteGenotype-only modelR20.105[0.084, 0.126]1.9x10-71
Non-British whiteFull model (covariates and genotypes)R20.103[0.082, 0.124]5.1x10-70
South AsianCovariate-only modelR20.019[0.005, 0.032]1.4x10-07
South AsianGenotype-only modelR20.085[0.058, 0.112]2.3x10-30
South AsianFull model (covariates and genotypes)R20.098[0.070, 0.127]6.5x10-35
AfricanCovariate-only modelR20.005[-0.003, 0.013]1.5x10-02
AfricanGenotype-only modelR20.015[0.001, 0.028]2.5x10-05
AfricanFull model (covariates and genotypes)R20.019[0.004, 0.034]2.0x10-06
OthersCovariate-only modelR20.056[0.047, 0.066]1.8x10-102
OthersGenotype-only modelR20.090[0.078, 0.102]7.5x10-166
OthersFull model (covariates and genotypes)R20.130[0.116, 0.144]8.0x10-243

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2023/per_trait/INI49/INI49.BETAs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 32756 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
CHROM POS Variant Variant ID Effect allele Consequence Gene symbol Beta
165380095416:53800954:T:Crs1421085CIntronicFTO0.470
185803927618:58039276:C:Trs2229616TPAVsMC4R-0.450
24171672:417167:T:Crs62106258COthersAC105393.2-0.341
11778894801:177889480:A:Grs543874GOthersSEC16B0.278
61275297806:127529780:G:Ars72961013AOthers-0.254
194618139219:46181392:G:Crs1800437CPAVsGIPR-0.249
112767991611:27679916:C:Trs6265TPAVsBDNF-0.234
11549913891:154991389:T:Crs905938CIntronicDCST20.200
147994264714:79942647:G:Ars7156625AIntronicNRXN30.193
4254088384:25408838:G:Ars34811474APAVsANAPC4-0.188
6346188936:34618893:G:Ars2814993AIntronicC6orf1060.186
194756900319:47569003:G:Ars3810291AUTRZC3H40.183
4451798834:45179883:C:Trs12641981TOthers0.178
185783976918:57839769:C:Ars571312AOthers0.175
185785258718:57852587:T:Crs476828COthers0.175
24660032:466003:G:Ars62104180AOthers-0.172
41031887094:103188709:C:Trs13107325TPAVsSLC39A80.171
16401346716:4013467:C:Trs2531995TUTRADCY90.163
26325502:632550:C:Trs13012571TOthers0.161
6315958826:31595882:C:Ars1046080APAVsPRRC2A0.153
7774235607:77423560:ATCCAGACTGGAATG:Ars866484129APTVsTMEM600.153
156745769815:67457698:A:Grs35874463GPAVsSMAD30.152
203402575620:34025756:A:Grs143384GUTRGDF50.152
1212441349112:124413491:G:Ars9971695AUTRDNAH10OS0.151
125024746812:50247468:G:Ars7138803AOthers0.151
116702453411:67024534:C:Trs7952436TUTRKDM2A-0.150
1786236261:78623626:C:Trs17391694TOthers0.147
6437570826:43757082:T:Ars4711750AOthersVEGFA-0.145
5774386865:77438686:C:Trs7378759TIntronicAP3B1-0.145
3123931253:12393125:C:Grs1801282GPAVsPPARG0.144
3647081143:64708114:C:Trs4132228TIntronicADAMTS9-AS20.142
191978952819:19789528:A:Grs2304130GPAVsZNF101-0.138
6131892756:13189275:T:Crs9367368CIntronicPHACTR1-0.136
8734390708:73439070:A:Grs1431659GOthers-0.135
8772282228:77228222:A:Grs1405348GOthers0.134
174712342317:47123423:T:Crs4643373CIntronicIGF2BP1-0.134
115463041:1546304:C:Trs11492279TOthersMIB2-0.134
49442104:944210:A:Crs34884217CPTVsTMEM1750.133
31413266023:141326602:T:Crs295322CPAVsRASA20.132
2251415382:25141538:A:Grs11676272GPAVsADCY30.130
111434276111:14342761:G:Ars11023186AIntronicRRAS20.129
142968532814:29685328:G:Ars974471AOthers0.129
168964400116:89644001:T:Crs455527CPAVsCPNE7-0.129
142378995514:23789955:A:Grs34074573GIntronicBCL2L2-PABPN10.128
11949611721:194961172:A:Grs7349184GOthers-0.127
109977240410:99772404:G:Ars563296AIntronicCRTAC10.127
51397217015:139721701:C:Trs4150212TIntronicHBEGF-0.127
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.127
7766081437:76608143:C:Trs2245368TOthersDTX2P1-0.127
163108862516:31088625:A:Grs749670GPAVsZNF646-0.126
41027093084:102709308:T:Crs11097755CIntronicBANK10.126
5750036785:75003678:T:Crs2307111CPAVsPOC5-0.126
12196442241:219644224:A:Grs2605100GOthers-0.125
61607728426:160772842:C:Trs539958TIntronicSLC22A30.122
1510069295315:100692953:G:Ars72755233APAVsADAMTS17-0.122
176583874317:65838743:T:Grs8074078GIntronicBPTF0.122
71304333847:130433384:C:Trs4731702TOthers0.121
184274836518:42748365:A:Grs8089498GIntronicRP11-846C15.20.120
184260609118:42606091:C:Trs9967367TIntronicSETBP1-0.120
2333595652:33359565:G:Ars116713089AUTRLTBP1-0.120
1212482646212:124826462:C:Trs2229840TPAVsNCOR20.120
6508030506:50803050:A:Grs987237GIntronicTFAP2B0.120
X117904229X:117904229:T:Crs2248846CPTVsIL13RA10.119
395173693:9517369:C:Trs11542009TPAVsSETD50.118
17182430517:1824305:C:Ars4790292AOthers-0.118
186084588418:60845884:T:Crs12454712CIntronicBCL20.118
81382152288:138215228:G:Ars16906845AOthers-0.117
11903031491:190303149:C:Trs648091TIntronicRP11-547I7.1, BRINP3-0.117
61319246896:131924689:G:Ars2248551AIntronicMED230.117
91226513959:122651395:G:Ars10984755AOthers0.117
125714606912:57146069:T:Grs2277339GPAVsPRIM1-0.116
193030568419:30305684:G:Ars3218036AIntronicCCNE10.116
6403719186:40371918:C:Trs1579557TIntronicLRFN20.116
8571386768:57138676:T:Grs36112366GOthersRP11-140I16.3-0.116
135106857513:51068575:T:Crs1262775CIntronicDLEU10.115
8814261968:81426196:C:Ars76767219APAVsZBTB100.114
6348246366:34824636:A:Grs11755393GPAVsUHRF1BP10.114
1212308744212:123087442:A:Grs7307735GPAVsKNTC10.113
146236046414:62360464:A:Grs217671GIntronicCTD-2277K2.10.113
81281071538:128107153:A:Crs16901949COthers-0.113
159257128315:92571283:G:Trs12101386TIntronicSLCO3A1-0.112
21629040132:162904013:T:Crs116302758CPTVsDPP4-0.112
191882030819:18820308:C:Ars757318AIntronicCRTC1-0.112
142593098814:25930988:C:Ars8015400AOthers0.112
61303741026:130374102:C:Ars9388768APAVsL3MBTL3-0.111
165429950316:54299503:C:Trs10521300TIntronicRP11-324D17.10.110
1728124401:72812440:G:Ars2815752AOthers0.110
3124984013:12498401:G:Ars4684859AOthers-0.109
162037081016:20370810:C:Trs9652588TPAVsPDILT-0.109
143329312214:33293122:A:Grs1051695GPAVsAKAP6-0.109
9983199699:98319969:T:Crs17370391COthers0.109
91294522049:129452204:T:Crs13285134CIntronicLMX1B0.108
12018692571:201869257:G:Ars2820312APAVsLMOD10.108
1011394032910:113940329:T:Crs2792751CPAVsGPAM0.108
3116404813:11640481:A:Grs17776719GIntronicVGLL40.108
11499064131:149906413:T:Crs11205303CPAVsMTMR110.107
5957288985:95728898:C:Grs6235GPAVsPCSK10.107
8766503348:76650334:T:Crs2060604COthers-0.106
71034353307:103435330:A:Crs56764559CIntronicRELN0.106
1111707697211:117076972:C:Ars45574931APAVsPCSK7-0.105

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 32756 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.

GREAT

GREAT: Genomic Regions Enrichment of Annotations Tool evaluates enrichment of pathway and ontology terms. The ability of GREAT to map non-coding genetic variants to their downstream target genes would be suitable for investigating pathway and ontology enrichment of genetic variants selected in our sparse iPGS model. The button above submits the top 1000 genetic variants with the largest absolute value of coefficients as a query to GREAT using the default parameters in GREAT v4.0.4. The 'top 1000 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check McLean et al. Nat Biotechnol. 2010 and Tanigawa*, Dyer*, and Bejerano. PLoS Comput Biol. 2022 for more information on GREAT.

Single-cell RNA-seq

For anthropometric traits, it may be relevant to investigate the single-cell expression profiling data in adipose-muscle tissues. Please check Single Cell Metab Browser from Yang*, Vamvini*, Nigro* et al. Cell Metab. 2022 as an example of such resources.


References