Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: BLQ: PLs in CMs and XXL VLDL


BLQ: PLs in CMs and XXL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.646[0.640, 0.653]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.634[0.628, 0.641]<1.0x10-300
white BritishGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.652[0.646, 0.659]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.643[0.637, 0.650]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.649[0.642, 0.656]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.650[0.644, 0.657]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.707[0.701, 0.713]<1.0x10-300
Non-British whiteCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.671[0.640, 0.701]6.4x10-24
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.623[0.592, 0.654]3.4x10-14
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.642[0.611, 0.672]1.6x10-17
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.644[0.613, 0.674]1.1x10-16
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.672[0.642, 0.703]2.6x10-24
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.674[0.643, 0.704]1.7x10-24
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.723[0.694, 0.751]1.7x10-36
South AsianCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.600[0.540, 0.660]7.8x10-04
South AsianGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.660[0.602, 0.718]1.4x10-07
South AsianGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.681[0.624, 0.737]2.5x10-08
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.661[0.601, 0.720]3.7x10-07
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.601[0.541, 0.661]8.6x10-04
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.602[0.542, 0.662]7.9x10-04
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.675[0.616, 0.734]7.9x10-09
AfricanCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.615[0.566, 0.664]7.9x10-06
AfricanGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.561[0.512, 0.609]1.7x10-02
AfricanGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.590[0.541, 0.638]6.9x10-04
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.605[0.557, 0.653]1.0x10-04
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.616[0.567, 0.665]7.1x10-06
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.617[0.568, 0.665]6.5x10-06
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.649[0.601, 0.696]1.0x10-08
OthersCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.670[0.651, 0.688]2.9x10-64
OthersGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.599[0.580, 0.618]9.9x10-23
OthersGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.622[0.603, 0.641]1.4x10-32
OthersGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.623[0.604, 0.642]4.4x10-33
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.670[0.652, 0.689]1.1x10-64
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.671[0.653, 0.690]4.7x10-65
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.709[0.691, 0.726]1.0x10-87

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/BIN_FC10023783/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 6112 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61609611376:160961137:T:Crs3798220CPAVsLPA0.413285590413958
61610101186:161010118:A:Grs10455872GIntronicLPA0.360814311896504
8198135298:19813529:A:Grs268GPAVsLPL-0.287000539408727
1111664891711:116648917:G:Crs964184CUTRZPR10.239161734052074
8198197248:19819724:C:Grs328GPTVsLPL0.229779069524834
19842932319:8429323:G:Ars116843064APAVsANGPTL40.220536434565613
194541564019:45415640:G:Ars445925AOthersAPOC1-0.171124062364073
1111669229311:116692293:C:Ars12721043APAVsAPOA40.164095466039032
2212315242:21231524:G:Ars676210APAVsAPOB0.138364756383639
2277309402:27730940:T:Crs1260326CPAVsGCKR0.130207023674456
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.0980130112470444
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B20.0909033272927357
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.0855245330904616
194541445119:45414451:T:Crs439401COthersAPOC1-0.0847961778506784
61610173636:161017363:G:Ars73596816AIntronicLPA0.084311643845975
1111665756111:116657561:C:Trs3741298TIntronicZPR10.0820009557587519
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.0757817702080368
1111666240711:116662407:G:Crs3135506CPAVsAPOA5-0.0740095951251539
1629400971:62940097:G:Ars1979722AIntronicDOCK70.0632964939976764
165699332416:56993324:C:Ars3764261AOthersCETP0.0590442523868803
12302976591:230297659:C:Trs2281719TIntronicGALNT20.0581164327745914
5558618945:55861894:G:Ars9687846AIntronic-0.0578203837576987
8198057088:19805708:G:Ars1801177APAVsLPL-0.0567825839449386
81265073898:126507389:C:Ars2954038AIntronic0.0567528416531041
61611070186:161107018:G:Ars9457997AOthers0.0560365551977455
61609603596:160960359:T:Crs6919346CIntronicLPA0.0523673376013479
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS2-0.0505372721811065
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.0503159759621425
1629075951:62907595:A:Grs656297GIntronicUSP10.0473687511271652
81264882508:126488250:C:Trs2980869TIntronic0.0471543220570972
71304382147:130438214:G:Ars13234407AOthers0.0463002778951771
8198246678:19824667:C:Trs15285TUTRLPL0.045900823362421
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0455937992884867
116157138211:61571382:G:Ars174549AUTRFADS1-0.0454673656789124
1272399201:27239920:C:Grs6659176GPAVsNR0B2-0.0450229713228484
22271014112:227101411:A:Grs2972144GOthers-0.0445407901127203
632631702HLA-DQB1*0201HLA-DQB1*0201+PAVsHLA-DQB10.0436402003282405
167214417416:72144174:T:Crs9302635CIntronicDHX380.0427109581548865
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0426905734914033
1111663394711:116633947:G:Ars10488698APAVsBUD130.0422423623159917
1111672863011:116728630:G:Crs12225230CPAVsSIK30.0418507083393995
8198194398:19819439:A:Grs326GIntronicLPL0.0408860206353706
61609536426:160953642:A:Grs41267809GPAVsLPA-0.0403331864910241
194543255719:45432557:G:Crs7259004CIntronicAPOC1P1-0.0383593569396783
7259918267:25991826:T:Crs4722551COthersMIR148A0.0377648010146745
31863377133:186337713:T:Crs4917CPAVsAHSG-0.0363604276991301
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.0338803228166282
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.0338157735740907
176421058017:64210580:A:Crs1801689CPAVsAPOH0.0336487553322035
61609215666:160921566:T:Grs9457930GIntronicLPAL20.0332013944305048
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0321053256212863
8199414488:19941448:C:Trs6989064TIntronic0.0315778525719274
21655485692:165548569:G:Ars10490694AIntronicCOBLL10.0301657218159702
125784371112:57843711:G:Ars2229357APAVsINHBC0.0300674045684383
161514864616:15148646:C:Ars11075253AIntronicNTAN1, PDXDC10.0293811022461883
116856232811:68562328:C:Trs2229738TPAVsCPT1A-0.0289439450367396
8106431648:10643164:C:Trs9657541TIntronicPINX1, SOX7-0.0289231795556762
51563960035:156396003:C:Trs12657266TOthers-0.028550844063131
61610181746:161018174:C:Trs7770628TIntronicLPA-0.0278143763571092
1111174934911:111749349:A:Trs611010TPAVsALG9, FDXACB10.0274211746280429
1111663994111:116639941:A:Grs1263149GIntronicBUD130.0268048906547936
1212450428312:124504283:T:Crs825508CIntronicRFLNA-0.0267552375341875
4261268384:26126838:A:Grs7673206GOthers-0.026188280498158
61605608456:160560845:A:Grs628031GPAVsSLC22A10.0260504041360447
22196688132:219668813:A:Grs6436089GIntronicCYP27A10.0259694778826294
165699723316:56997233:G:Ars1864163AIntronicCETP-0.0256342279700353
114720947211:47209472:G:Ars901750AOthersPACSIN30.0256321771393533
174193137517:41931375:A:Grs12453522GPAVsCD300LG-0.0251171259356361
1212456684112:124566841:A:Grs10846600GIntronicRFLNA0.0247575608931006
1212446483612:124464836:G:Trs11057408TIntronicZNF6640.0246134552113074
3523596783:52359678:T:Crs6796333CIntronicDNAH10.0241556602437129
4896688594:89668859:C:Trs7657817TPAVsFAM13A0.0241095656561171
204455401520:44554015:T:Crs6065906COthers-0.0240717897747068
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P-0.0240503103749387
122047375812:20473758:C:Ars7134375AOthers0.0238317746472279
1111651152211:116511522:C:Trs519000TIntronic-0.0238239180631544
61303937826:130393782:A:Grs7769599GIntronicL3MBTL30.0238115515365313
61604720326:160472032:T:Grs4709393GIntronicIGF2R0.0236857323332446
7172845777:17284577:T:Crs4410790COthers-0.0236771911519448
1111895217311:118952173:A:Grs15818GPAVsVPS11-0.0235225428569393
223746959022:37469590:C:Trs387907018TPAVsTMPRSS6-0.0234186301535018
19720439419:7204394:T:Grs2042901GIntronicINSR0.0233372037806787
1011578136710:115781367:T:Grs2782979GOthers0.0231779183465938
627879256:2787925:A:Grs460677GOthersWRNIP1-0.0231056448588469
1438864941:43886494:C:Trs2782643TPAVsSZT2-0.0226576031065157
122133154912:21331549:T:Crs4149056CPAVsSLCO1B1-0.0226248489577495
7730328357:73032835:T:Crs7785479CIntronicMLXIPL0.0226143382186132
117762913211:77629132:A:ATrs60400274ATPTVsAAMDC-0.0225759337414731
81264817478:126481747:A:Grs2980875GIntronic0.0225696517465203
116159721211:61597212:C:Trs174570TIntronicFADS2-0.0225250937371897
204303478320:43034783:C:Trs736823TPAVsHNF4A0.0222501075983245
4879967454:87996745:G:Ars17605615AIntronicAFF1-0.0222464313537594
3123931253:12393125:C:Grs1801282GPAVsPPARG0.021994865329727
2212257532:21225753:C:Trs1042031TPAVsAPOB-0.0219691269402858
9866172659:86617265:A:Grs1982151GPAVsRMI1-0.0218216621138995
61609175596:160917559:C:Trs3127569TIntronicLPAL2-0.0215626956529847
167973498716:79734987:G:Ars7188445AIntronic-0.0215448147519477
7259975367:25997536:A:Grs4719841GOthers-0.0215221697151089
1311454901513:114549015:T:Crs6602910CIntronicGAS6-0.0215000965016122
1510191055015:101910550:G:Ars20543APAVsPCSK6-0.0211552080122969

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 6112 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References