Hypometric genetics: Improved power in genetic discovery by incorporating quality control flags

Tanigawa and Kellis. Am J Hum Genet. (2024).


Phenotype: BLQ: Free Chol. in CMs and XXL VLDL


BLQ: Free Chol. in CMs and XXL VLDL iPGS coefficients

Our FAQ page shows the description of the file format and how you may use iPGS coefficients in your research.


Predictive performance of iPGS models

We evaluated the predictive performance of the inclusive polygenic score models using the held-out test set individuals.

Population Model PGS trait type Metric Predictive Performance 95% CI P-value
Population Model PGS trait type Metric Predictive Performance 95% CI P-value
white BritishCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.638[0.632, 0.645]<1.0x10-300
white BritishGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.633[0.627, 0.640]<1.0x10-300
white BritishGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.652[0.645, 0.658]<1.0x10-300
white BritishGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.642[0.635, 0.648]<1.0x10-300
white BritishFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.640[0.633, 0.646]<1.0x10-300
white BritishFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.641[0.634, 0.647]<1.0x10-300
white BritishFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.701[0.695, 0.707]<1.0x10-300
Non-British whiteCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.660[0.629, 0.690]2.8x10-22
Non-British whiteGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.629[0.599, 0.659]4.9x10-16
Non-British whiteGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.644[0.614, 0.674]1.1x10-18
Non-British whiteGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.647[0.617, 0.677]2.3x10-18
Non-British whiteFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.661[0.631, 0.692]1.5x10-22
Non-British whiteFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.662[0.632, 0.693]1.1x10-22
Non-British whiteFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.718[0.690, 0.745]1.1x10-36
South AsianCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.580[0.524, 0.636]3.2x10-03
South AsianGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.637[0.582, 0.693]7.0x10-07
South AsianGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.657[0.604, 0.710]1.0x10-07
South AsianGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.629[0.573, 0.685]4.2x10-06
South AsianFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.580[0.524, 0.636]3.4x10-03
South AsianFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.581[0.525, 0.637]3.2x10-03
South AsianFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.640[0.582, 0.697]2.6x10-07
AfricanCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.604[0.553, 0.655]8.6x10-05
AfricanGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.559[0.509, 0.608]3.3x10-02
AfricanGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.594[0.545, 0.643]6.7x10-04
AfricanGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.593[0.544, 0.642]4.3x10-04
AfricanFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.604[0.554, 0.655]8.0x10-05
AfricanFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.605[0.554, 0.655]7.5x10-05
AfricanFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.634[0.585, 0.684]2.7x10-07
OthersCovariate-only modelBLQ (binarized at BLQ threshold)AUROC0.656[0.638, 0.674]4.8x10-58
OthersGenotype-only modelTruncated (excl. BLQ measurements)AUROC0.601[0.582, 0.620]1.4x10-25
OthersGenotype-only modelOriginal (incl. BLQ measurements)AUROC0.624[0.605, 0.642]1.3x10-35
OthersGenotype-only modelBLQ (binarized at BLQ threshold)AUROC0.624[0.606, 0.643]8.6x10-35
OthersFull model (covariates and genotypes)Truncated (excl. BLQ measurements)AUROC0.656[0.637, 0.674]8.6x10-58
OthersFull model (covariates and genotypes)Original (incl. BLQ measurements)AUROC0.656[0.638, 0.675]4.3x10-58
OthersFull model (covariates and genotypes)BLQ (binarized at BLQ threshold)AUROC0.696[0.679, 0.714]1.2x10-83

The predictive performance (R2), its 95% confidence interval (CI), and statistical significance (P-value) are shown for each population in UK Biobank in the held-out test set. The "model" column indicates whether the predictive performance is from the covariate-terms alone (covariate-only model), PGS terms alone (Genotype-only model), or the full model containing both PGS and covariate terms. We used the following sets of covariates in our analysis: age, sex, age2, age*sex, Townsend deprivation index, and genotype PCs (PC1-PC18). Please refer to our publication for a more detailed description of the methods.


Coefficients (BETA) of PGS models

/static/data/tanigawakellis2024/per_trait/BIN_FC10023786/pgscoeffs.png

We show the coefficients (BETA) of PGS models. Our iPGS model selected 5219 variants with non-zero coefficients. The genetic variants with the large absolute values of coefficients are annotated in the plot. There is no guarantee that our iPGS model selects causal variants. We use the GRCh37/hg19 reference genome.

The top 100 genetic variants with the largest absolute value of coefficients

CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
CHROM POS Variant Variant ID Effect Allele Consequence Gene symbol Effect Weight
61609611376:160961137:T:Crs3798220CPAVsLPA0.409085745866553
61610101186:161010118:A:Grs10455872GIntronicLPA0.369370163873757
8198135298:19813529:A:Grs268GPAVsLPL-0.269934802138509
1111664891711:116648917:G:Crs964184CUTRZPR10.254808850050895
19842932319:8429323:G:Ars116843064APAVsANGPTL40.217945380232221
8198197248:19819724:C:Grs328GPTVsLPL0.215812765262063
194541564019:45415640:G:Ars445925AOthersAPOC1-0.167501123689213
2277309402:27730940:T:Crs1260326CPAVsGCKR0.135294916152381
2212315242:21231524:G:Ars676210APAVsAPOB0.124851794404295
1111704240811:117042408:C:Trs186808413TPAVsPAFAH1B20.101698876548582
1111669229311:116692293:C:Ars12721043APAVsAPOA40.0997069337230309
7730203377:73020337:C:Grs3812316GPAVsMLXIPL0.0943141006306913
174192612617:41926126:C:Trs72836561TPAVsCD300LG-0.092239393096789
1629075951:62907595:A:Grs656297GIntronicUSP10.0912465530770053
194541445119:45414451:T:Crs439401COthersAPOC1-0.0872810528751251
154382071715:43820717:C:Trs55707100TPAVsMAP1A-0.0781052164971783
1111665756111:116657561:C:Trs3741298TIntronicZPR10.071422271738647
61610173636:161017363:G:Ars73596816AIntronicLPA0.0672819624787544
1111666240711:116662407:G:Crs3135506CPAVsAPOA5-0.0645299282018601
61611070186:161107018:G:Ars9457997AOthers0.0641295296531865
165699332416:56993324:C:Ars3764261AOthersCETP0.0623030951428842
81265073898:126507389:C:Ars2954038AIntronic0.0600959218383573
191937954919:19379549:C:Trs58542926TPAVsTM6SF20.0589172350112204
12302976591:230297659:C:Trs2281719TIntronicGALNT20.0566252029218686
61609603596:160960359:T:Crs6919346CIntronicLPA0.0517190787521938
106492782310:64927823:C:Grs1935GPAVsJMJD1C0.0512534800692199
167214417416:72144174:T:Crs9302635CIntronicDHX380.0502441273338416
5558618945:55861894:G:Ars9687846AIntronic-0.0501321143940957
8198057088:19805708:G:Ars1801177APAVsLPL-0.0500753575247979
116157138211:61571382:G:Ars174549AUTRFADS1-0.0500134984008711
81264817478:126481747:A:Grs2980875GIntronic0.0489690413312232
51563960035:156396003:C:Trs12657266TOthers-0.0468909754184671
1111672863011:116728630:G:Crs12225230CPAVsSIK30.0463424988663498
632631702HLA-DQB1*0201HLA-DQB1*0201+PAVsHLA-DQB10.0461104697428882
21655286242:165528624:G:Trs1128249TIntronicCOBLL10.0445564041982298
116159236211:61592362:A:Grs174566GIntronicFADS1, FADS2-0.0443804997395469
2212252812:21225281:C:Trs1042034TPAVsAPOB-0.0408194787658911
8198194398:19819439:A:Grs326GIntronicLPL0.0403295621404415
176421058017:64210580:A:Crs1801689CPAVsAPOH0.0396189947941363
7259918267:25991826:T:Crs4722551COthersMIR148A0.0390546193028313
1111663394711:116633947:G:Ars10488698APAVsBUD130.0383769154724552
61609215666:160921566:T:Grs9457930GIntronicLPAL20.0375762427347131
8198246678:19824667:C:Trs15285TUTRLPL0.0354093861886088
61607663216:160766321:C:Trs540713TOthersSLC22A3-0.0352219746100606
5557991845:55799184:C:Ars157843AOthers-0.0344248336340908
22271014112:227101411:A:Grs2972144GOthers-0.0334488606135635
31863377133:186337713:T:Crs4917CPAVsAHSG-0.0333970364830686
8199414488:19941448:C:Trs6989064TIntronic0.0329390027542656
125784371112:57843711:G:Ars2229357APAVsINHBC0.0315775523434494
194543255719:45432557:G:Crs7259004CIntronicAPOC1P1-0.0311958556826201
1629400971:62940097:G:Ars1979722AIntronicDOCK70.0306899706612802
7730120427:73012042:G:Ars35332062APAVsMLXIPL0.0297799808905203
194538959619:45389596:G:Ars7254892AIntronicNECTIN2-0.0295834743990137
1272399201:27239920:C:Grs6659176GPAVsNR0B2-0.0289434849543176
22196688132:219668813:A:Grs6436089GIntronicCYP27A10.0286657837326794
1111651152211:116511522:C:Trs519000TIntronic-0.0282614727364488
21655485692:165548569:G:Ars10490694AIntronicCOBLL10.0275765005780862
22423956742:242395674:G:Ars4675812AIntronicFARP20.0272951303574547
4261268384:26126838:A:Grs7673206GOthers-0.0270045282238756
174193137517:41931375:A:Grs12453522GPAVsCD300LG-0.0268370438891115
7259975367:25997536:A:Grs4719841GOthers-0.0255273401143988
71304382147:130438214:G:Ars13234407AOthers0.0254284264054762
8182724388:18272438:C:Trs4921914TOthers0.0250562063597108
434460914:3446091:G:Trs3748034TPAVsHGFAC-0.024881592663873
114720947211:47209472:G:Ars901750AOthersPACSIN30.0247336439512214
6326024306:32602430:C:Ars17211510AIntronicHLA-DQA1-0.0244012893388259
2212257532:21225753:C:Trs1042031TPAVsAPOB-0.0240784169500555
154381805215:43818052:G:Ars2245715APAVsMAP1A-0.024053835649023
61610181746:161018174:C:Trs7770628TIntronicLPA-0.0239125572753089
9866172659:86617265:A:Grs1982151GPAVsRMI1-0.0236077035693128
11507275391:150727539:G:Ars2230061APAVsCTSS-0.0231426255978486
1438864941:43886494:C:Trs2782643TPAVsSZT2-0.0231397502448334
51766690305:176669030:A:Grs918459GIntronicNSD1-0.0230482231605603
61609175596:160917559:C:Trs3127569TIntronicLPAL2-0.023035381355825
126284999912:62849999:T:Crs11174487COthers0.0229396057176151
195748842319:57488423:C:Trs8102873TOthers-0.0229149149795441
4879967454:87996745:G:Ars17605615AIntronicAFF1-0.0229128831249158
122133154912:21331549:T:Crs4149056CPAVsSLCO1B1-0.0228347480252361
19720439419:7204394:T:Grs2042901GIntronicINSR0.0228160859528689
167973498716:79734987:G:Ars7188445AIntronic-0.0226409525433009
223746959022:37469590:C:Trs387907018TPAVsTMPRSS6-0.0225230435922468
172669486117:26694861:G:Ars704APAVsVTN0.0224626334046395
139523182513:95231825:G:Ars2275647AOthersTGDS-0.0221388590388413
61609536426:160953642:A:Grs41267809GPAVsLPA-0.0220879979388689
1510191055015:101910550:G:Ars20543APAVsPCSK6-0.0220795744267453
2203742862:20374286:G:Ars6531216AOthersRN7SL140P, RNU6-961P-0.0219081871321895
161513197416:15131974:G:Trs1136001TPAVsNTAN1-0.0218983360267126
4896688594:89668859:C:Trs7657817TPAVsFAM13A0.0218488909366512
61605608456:160560845:A:Grs628031GPAVsSLC22A10.0218197313879881
8198523628:19852362:T:Crs17411045COthers0.0216667824196092
6437588736:43758873:G:Ars6905288AOthersVEGFA-0.0215907912161688
19861558919:8615589:A:Grs4804311GPAVsMYO1F0.0213754103862364
8593392798:59339279:T:Crs7007181CIntronicUBXN2B0.0212649856951299
61611522406:161152240:G:Ars4252125APAVsPLG-0.0212551159322518
1311223011413:112230114:T:Crs2774440COthers-0.0212408623924561
155872342615:58723426:A:Grs1077835GIntronicALDH1A2, LIPC0.0209503173464937
31567977023:156797702:G:Ars10049090AOthers0.0208818413305445
1111663994111:116639941:A:Grs1263149GIntronicBUD130.0206045929777202
1212444672812:124446728:A:Grs7312404GIntronicCCDC920.0205183686909357
3123931253:12393125:C:Grs1801282GPAVsPPARG0.0205050843573811

There is no guarantee that our iPGS model selects causal variants. We show the top 100 variants with the largest effect size (BETA). To see 5219 variants included in our iPGS model, please download the iPGS coefficients by clicking the download button. We use the GRCh37/hg19 reference genome.


Follow-up analysis

There are several ways to use the resource in your research. First, you may use our iPGS coefficients and compute individual-level polygenic scores for your cohort. Second, you may also investigate the genetic variants with non-zero coefficients and their annotated genes to learn more about biology by taking advantage of the sparsity of our iPGS models. For your convenience, here we suggest several resources as an example of follow-up analysis. We do not intend to cover all the relevant follow-up analyses.

Using iPGS coefficients

By clicking the download button above, you may download the iPGS coefficients. Our FAQ page shows the description of file format and how you may use iPGS coefficients in your research.

HaploReg

HaploReg is a tool for exploring annotations of the non-coding genome at variants on haplotype blocks. The button above submits the top 100 genetic variants with the largest absolute value of coefficients as a query to HaploReg using the default parameters in HaploReg v4.2 (LD threshold r2 >= 1, ChromHMM 15-state model, SiPhy-omega, and GENCODE genes). HaploReg's ability to browse haplotypes is useful here as there is no guarantee that our iPGS model selects causal variants. The 'top 100 variant' cutoff is an arbitrary threshold; we aim to demonstrate how one may investigate the selected variants. Please check Ward and Kellis. Nucleic Acids Res. 2012 and Ward and Kellis. Nucleic Acids Res. 2016 for more information on HaploReg.


References